We prove that an element g of prime order belongs to the solvable radical of a finite group if and only if for every the subgroup generated by g and is solvable. This theorem implies that a finite group G is solvable if and only if in each conjugacy class of G every two elements generate a solvable subgroup.
Nous démontrons qu'un élément g d'ordre premier appartient au radical résoluble d'un groupe fini G si et seulement si pour tout le sous-groupe engendré par x et est résoluble. Ce théorème implique qu'un groupe fini G est résoluble si et seulement si dans chaque classe de conjugaison de G tout couple d'éléments engendre un sous-groupe résoluble.
Accepted:
Published online:
Nikolai Gordeev 1; Fritz Grunewald 2; Boris Kunyavskiĭ 3; Eugene Plotkin 3
@article{CRMATH_2009__347_5-6_217_0, author = {Nikolai Gordeev and Fritz Grunewald and Boris Kunyavski\u{i} and Eugene Plotkin}, title = {Baer{\textendash}Suzuki theorem for the solvable radical of a finite group}, journal = {Comptes Rendus. Math\'ematique}, pages = {217--222}, publisher = {Elsevier}, volume = {347}, number = {5-6}, year = {2009}, doi = {10.1016/j.crma.2009.01.004}, language = {en}, }
TY - JOUR AU - Nikolai Gordeev AU - Fritz Grunewald AU - Boris Kunyavskiĭ AU - Eugene Plotkin TI - Baer–Suzuki theorem for the solvable radical of a finite group JO - Comptes Rendus. Mathématique PY - 2009 SP - 217 EP - 222 VL - 347 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2009.01.004 LA - en ID - CRMATH_2009__347_5-6_217_0 ER -
%0 Journal Article %A Nikolai Gordeev %A Fritz Grunewald %A Boris Kunyavskiĭ %A Eugene Plotkin %T Baer–Suzuki theorem for the solvable radical of a finite group %J Comptes Rendus. Mathématique %D 2009 %P 217-222 %V 347 %N 5-6 %I Elsevier %R 10.1016/j.crma.2009.01.004 %G en %F CRMATH_2009__347_5-6_217_0
Nikolai Gordeev; Fritz Grunewald; Boris Kunyavskiĭ; Eugene Plotkin. Baer–Suzuki theorem for the solvable radical of a finite group. Comptes Rendus. Mathématique, Volume 347 (2009) no. 5-6, pp. 217-222. doi : 10.1016/j.crma.2009.01.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.01.004/
[1] On conjugacy classes of p-elements, J. Algebra, Volume 19 (1971), pp. 536-537
[2] Engelsche Elemente Noetherscher Gruppen, Math. Ann., Volume 133 (1957), pp. 256-270
[3] Finite Groups of Lie Type. Conjugacy Classes and Complex Characters, John Wiley & Sons, Chichester, 1985
[4] Intersection of conjugacy classes with Bruhat cells in Chevalley groups, Pacific J. Math., Volume 214 (2004), pp. 245-261
[5] Finite groups in which every two elements generate a soluble group, Invent. Math., Volume 121 (1995), pp. 279-285
[6] A weak soluble analogue of the Baer–Suzuki theorem http://web.mat.bham.ac.uk/P.J.Flavell/research/preprints (preprint, available at)
[7] On the fitting height of a soluble group that is generated by a conjugacy class, J. London Math. Soc. (2), Volume 66 (2002), pp. 101-113
[8] P. Flavell, S. Guest, R. Guralnick, Characterizations of the solvable radical, submitted for publication
[9] On the number of conjugates defining the solvable radical of a finite group, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 387-392
[10] A commutator description of the solvable radical of a finite group, Groups, Geometry, and Dynamics, Volume 2 (2008), pp. 85-120
[11] A description of Baer–Suzuki type of the solvable radical of a finite group, J. Pure Appl. Algebra, Volume 213 (2009), pp. 250-258
[12] Products of conjugacy classes in Chevalley groups, I: Extended covering numbers, Israel J. Math., Volume 130 (2002), pp. 207-248
[13] The local structure of finite groups of characteristic 2 type, Mem. Amer. Math. Soc., Volume 42 (1983) no. 276
[14] The Classification of the Finite Simple Groups, Number 3, Math. Surveys and Monographs, vol. 40, Amer. Math. Soc., Providence, RI, 1998
[15] Commutators in finite simple groups of Lie type, Bull. London Math. Soc., Volume 32 (2000), pp. 311-315
[16] S. Guest, A solvable version of the Baer–Suzuki theorem and generalizations, Ph.D. Thesis, USC, May 2008
[17] S. Guest, A solvable version of the Baer–Suzuki theorem, Trans. Amer. Math. Soc., in press
[18] Generation of finite almost simple groups by conjugates, J. Algebra, Volume 268 (2003), pp. 519-571
[19] Matrix generators for the Ree groups , Comm. Algebra, Volume 29 (2001), pp. 407-413
[20] The maximal subgroups of the Chevalley groups with q odd, the Ree groups , and their automorphism groups, J. Algebra, Volume 117 (1988), pp. 30-71
[21] Structure of Ree groups, Algebra i Logika, Volume 24 (1985) no. 1, pp. 26-41 (English transl. in Algebra and Logic, 24, 1985, pp. 16-26)
[22] Subgroups of maximal rank in finite exceptional groups of Lie type, Proc. London Math. Soc., Volume 65 (1992), pp. 297-325
[23] The maximal subgroups of , J. Algebra, Volume 139 (1991), pp. 52-69
[24] Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Math., vol. 131, Springer-Verlag, Berlin–New York, 1970, pp. 167-266
[25] R. Steinberg, Lectures on Chevalley Groups, Yale Univ., 1967
[26] On a class of doubly transitive groups, Ann. Math. (2), Volume 75 (1962), pp. 105-145
[27] Finite groups in which the centralizer of any element of order 2 is 2-closed, Ann. of Math. (2), Volume 82 (1965), pp. 191-212
[28] Non-solvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 383-437
[29] Generation of exceptional groups of Lie-type, Geom. Dedicata, Volume 41 (1992), pp. 63-87
Cited by Sources:
Comments - Policy