[Le theorème de Plemelj–Privalov au domaine de l'analyse de Clifford]
Cette Note propose une condition géométrique sur une surface de
This Note gives geometric conditions on a surface of
Accepté le :
Publié le :
Ricardo Abreu Blaya 1 ; Juan Bory Reyes 2 ; Tania Moreno García 1
@article{CRMATH_2009__347_5-6_223_0, author = {Ricardo Abreu Blaya and Juan Bory Reyes and Tania Moreno Garc{\'\i}a}, title = {The {Plemelj{\textendash}Privalov} theorem in {Clifford} analysis}, journal = {Comptes Rendus. Math\'ematique}, pages = {223--226}, publisher = {Elsevier}, volume = {347}, number = {5-6}, year = {2009}, doi = {10.1016/j.crma.2009.01.029}, language = {en}, }
TY - JOUR AU - Ricardo Abreu Blaya AU - Juan Bory Reyes AU - Tania Moreno García TI - The Plemelj–Privalov theorem in Clifford analysis JO - Comptes Rendus. Mathématique PY - 2009 SP - 223 EP - 226 VL - 347 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2009.01.029 LA - en ID - CRMATH_2009__347_5-6_223_0 ER -
Ricardo Abreu Blaya; Juan Bory Reyes; Tania Moreno García. The Plemelj–Privalov theorem in Clifford analysis. Comptes Rendus. Mathématique, Volume 347 (2009) no. 5-6, pp. 223-226. doi : 10.1016/j.crma.2009.01.029. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.01.029/
[1] Cauchy transform on non-rectifiable surfaces in Clifford analysis, J. Math. Anal. Appl., Volume 339 (2008), pp. 31-44
[2] Clifford Cauchy type integrals on Ahlfors–David regular surfaces in
[3] Clifford Analysis, Research Notes in Mathematics, vol. 76, Pitman (Advanced Publishing Program), Boston, 1982
[4] Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. Ecole Norm. Sup. (4), Volume 17 (1984) no. 1, pp. 157-189 (in French)
[5] Analysis of and on Uniformly Rectifiable Sets, Mathematical Surveys and Monographs, vol. 38, American Mathematical Society, Providence, RI, 1993
[6] Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 153, Springer-Verlag New York Inc., New York, 1969
[7] The Plemelj–Privalov theorem for generalized Hölder classes, Mat. Sb., Volume 183 (1992) no. 2, pp. 21-37 (in Russian); Translation in Russian Acad. Sci. Sb. Math., 75, 1, 1993, pp. 165-182
[8] Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995
[9] Direct and inverse estimates for a singular Cauchy integral along a closed curve, Math. Notes, Volume 19 (1976), pp. 221-231
[10] The Plemelj–Privalov theorem, Dokl. Akad. Nauk SSSR, Volume 315 (1990) no. 4, pp. 790-793 (in Russian); Translation in Soviet Math. Dokl., 42, 3, 1991, pp. 849-852
- H-B theorems of Cauchy integral operators in Clifford analysis, Advances in Applied Clifford Algebras, Volume 35 (2025) no. 1, p. 19 (Id/No 10) | DOI:10.1007/s00006-025-01371-0 | Zbl:7978192
- Singular integral operators and a
-problem for -harmonic functions, Analysis and Mathematical Physics, Volume 11 (2021) no. 4, p. 26 (Id/No 155) | DOI:10.1007/s13324-021-00590-5 | Zbl:1476.30162 - On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation, Analysis and Mathematical Physics, Volume 9 (2019) no. 1, pp. 483-496 | DOI:10.1007/s13324-018-0210-3 | Zbl:1418.30045
- On the Plemelj-Privalov theorem in Clifford analysis involving higher order Lipschitz classes, Journal of Mathematical Analysis and Applications, Volume 480 (2019) no. 2, p. 13 (Id/No 123411) | DOI:10.1016/j.jmaa.2019.123411 | Zbl:1427.30074
- A bimonogenic Cauchy transform on higher order Lipschitz classes, Mediterranean Journal of Mathematics, Volume 16 (2019) no. 1, p. 14 (Id/No 13) | DOI:10.1007/s00009-018-1280-z | Zbl:1412.30137
- Hölder norm estimate for the Hilbert transform in Clifford analysis, Bulletin of the Brazilian Mathematical Society. New Series, Volume 41 (2010) no. 3, pp. 389-398 | DOI:10.1007/s00574-010-0017-9 | Zbl:1222.30040
Cité par 6 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier