We consider Discontinuous Galerkin approximations of two-phase, immiscible porous media flows in the global pressure/fractional flow formulation with capillary pressure. A sequential approach is used with a backward Euler step for the saturation equation, equal-order interpolation for the pressure and the saturation, and without any limiters. An accurate total velocity field is recovered from the global pressure equation to be used in the saturation equation. Numerical experiments show the advantages of the proposed reconstruction.
Nous considérons une méthode de Galerkine discontinue pour approcher les écoulements diphasiques non-miscibles en milieu poreux dans la formulation en pression globale. Une approche séquentielle est utilisée avec un schéma d'Euler implicite pour l'équation de la saturation, le même ordre polynomial pour la pression et la saturation, et en l'absence de limiteurs. Nous montrons comment reconstruire à partir de l'équation en pression une vitesse totale précise pour l'équation de la saturation. Des exemples numériques illustrent les avantages de l'approche proposée.
Accepted:
Published online:
Alexandre Ern 1; Igor Mozolevski 1, 2; L. Schuh 3
@article{CRMATH_2009__347_9-10_551_0, author = {Alexandre Ern and Igor Mozolevski and L. Schuh}, title = {Accurate velocity reconstruction for {Discontinuous} {Galerkin} approximations of two-phase porous media flows}, journal = {Comptes Rendus. Math\'ematique}, pages = {551--554}, publisher = {Elsevier}, volume = {347}, number = {9-10}, year = {2009}, doi = {10.1016/j.crma.2009.02.011}, language = {en}, }
TY - JOUR AU - Alexandre Ern AU - Igor Mozolevski AU - L. Schuh TI - Accurate velocity reconstruction for Discontinuous Galerkin approximations of two-phase porous media flows JO - Comptes Rendus. Mathématique PY - 2009 SP - 551 EP - 554 VL - 347 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2009.02.011 LA - en ID - CRMATH_2009__347_9-10_551_0 ER -
%0 Journal Article %A Alexandre Ern %A Igor Mozolevski %A L. Schuh %T Accurate velocity reconstruction for Discontinuous Galerkin approximations of two-phase porous media flows %J Comptes Rendus. Mathématique %D 2009 %P 551-554 %V 347 %N 9-10 %I Elsevier %R 10.1016/j.crma.2009.02.011 %G en %F CRMATH_2009__347_9-10_551_0
Alexandre Ern; Igor Mozolevski; L. Schuh. Accurate velocity reconstruction for Discontinuous Galerkin approximations of two-phase porous media flows. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 551-554. doi : 10.1016/j.crma.2009.02.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.02.011/
[1] Superconvergence and H(div) projection for discontinuous Galerkin methods, Internat. J. Numer. Methods Fluids, Volume 42 (2003) no. 10, pp. 1043-1057
[2] P. Bastian, B. Rivière, Discontinuous Galerkin methods for two-phase flow in porous media, Technical Report 2004-28, 2004
[3] Mathematical Models and Finite Elements for Reservoir Simulation, Elsevier, North-Holland, 1986
[4] Degenerate two-phase incompressible flow, Numer. Math., Volume 90 (2001), pp. 215-240
[5] Fully implicit discontinuous finite element methods for two-phase flow, Appl. Numer. Math., Volume 57 (2007), pp. 383-401
[6] An accurate flux reconstruction for discontinuous Galerkin approximations of elliptic problems, C. R. Acad. Sci. Paris, Ser. I, Volume 345 (2007) no. 12, pp. 709-712
[7] Mathematical study of a petroleum-engineering scheme, Math. Modell. Numerical Anal., Volume 37 (2003) no. 6, pp. 937-972
Cited by Sources:
Comments - Policy