Comptes Rendus
Statistique/Systèmes dynamiques
Estimation de facteurs de Bayes entre modèles dynamiques non linéaires à espace d'état
Comptes Rendus. Mathématique, Volume 347 (2009) no. 7-8, pp. 429-434.

Les modèles non linéaires à espace d'état sont utilisés de façon croissante pour représenter de nombreux systèmes dynamiques stochastiques et pour les contrôler. De nouveaux outils de filtrage particulaire sont maintenant disponibles pour l'identification de ces modèles. Il n'en va pas de même pour le problème de leur sélection statistique car les vraisemblances associées sont le plus souvent non accessibles et d'estimation difficile. Ceci exclut a priori les critères classiques de comparaison de modèles de type Akaïke et compromet l'utilisation des méthodes performantes basées sur l'estimation d'un facteur de Bayes par simulations MCMC.

Cette Note propose un estimateur convergent non paramétrique d'un facteur de Bayes pour ces modèles, comme application directe de ces nouveaux filtres particulaires.

The use of nonlinear state space models in the study and control of stochastic dynamic systems is regularly growing. With the new generation of particle filters, efficient filtering methods are now available for the identification of these models. However their statistical selection is still an open problem because of the frequent nonaccessibility of the related likelihoods and the intricate estimation of the latter. This rules out all the usual model comparison information criteria as Akaïke's and unfavour also the efficient methods relying on Bayes factor estimation by MCMC simulations.

This Note shows how a convergent nonparametric Bayes factor estimator can be built and used advantageously, as direct application of these new particle filters themselves.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.02.017

Jean-Pierre Vila 1 ; Issa Saley 1

1 UMR Analyse des systèmes et biométrie, INRA-SupAgro, 2, place Pierre-Viala, 34060 Montpellier, France
@article{CRMATH_2009__347_7-8_429_0,
     author = {Jean-Pierre Vila and Issa Saley},
     title = {Estimation de facteurs de {Bayes} entre mod\`eles dynamiques non lin\'eaires \`a espace d'\'etat},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {429--434},
     publisher = {Elsevier},
     volume = {347},
     number = {7-8},
     year = {2009},
     doi = {10.1016/j.crma.2009.02.017},
     language = {fr},
}
TY  - JOUR
AU  - Jean-Pierre Vila
AU  - Issa Saley
TI  - Estimation de facteurs de Bayes entre modèles dynamiques non linéaires à espace d'état
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 429
EP  - 434
VL  - 347
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2009.02.017
LA  - fr
ID  - CRMATH_2009__347_7-8_429_0
ER  - 
%0 Journal Article
%A Jean-Pierre Vila
%A Issa Saley
%T Estimation de facteurs de Bayes entre modèles dynamiques non linéaires à espace d'état
%J Comptes Rendus. Mathématique
%D 2009
%P 429-434
%V 347
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2009.02.017
%G fr
%F CRMATH_2009__347_7-8_429_0
Jean-Pierre Vila; Issa Saley. Estimation de facteurs de Bayes entre modèles dynamiques non linéaires à espace d'état. Comptes Rendus. Mathématique, Volume 347 (2009) no. 7-8, pp. 429-434. doi : 10.1016/j.crma.2009.02.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.02.017/

[1] F. Bartolucci; L. Scaccia; A. Mira Efficient Bayes factor estimation from the reversible jump output, Biometrika, Volume 93 (2006) no. 1, pp. 41-52

[2] D. Bosq; J.P. Lecoutre Théorie de l'estimation fonctionnelle, Economica, Paris, 1987

[3] M.H. Chen; Q.M. Shao Estimating ratios of normalizing constants for densities with different dimensions, Statist. Sinica, Volume 7 (1997), pp. 607-630

[4] A.P. Dawid Statistical theory: The prequential approach, J. Roy. Statist. Soc. Ser. A, Volume 147 (1984), pp. 278-292

[5] P. Del Moral Feynman–Kac Formulae. Genealogical and Interacting Particle Systems with Applications, Springer-Verlag, New York, 2004

[6] L. Devroye A Course in Density Estimation, Birkhäuser, Boston, 1987

[7] A. Doucet; N. de Freitas; N. Gordon Sequential Monte Carlo Methods in Practice, Statistics for Engineering and Information Science, Springer, New York, 2001

[8] A.E. Gelfand; A.F.M. Smith Sampling-based approach to calculating marginal densities, J. Amer. Statist. Assoc., Volume 85 (1990), pp. 398-409

[9] A.E. Gelman; X.L. Meng Computing normalizing constants: from importance sampling to bridge sampling to path sampling, Statist. Sci., Volume 13 (1998), pp. 163-185

[10] T. Gneiting; A.E. Raftery Strictly proper scoring rules, prediction, and estimation, J. Amer. Statist. Assoc., Volume 102 (2007), pp. 359-378

[11] P.J. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, Volume 82 (1995), pp. 711-732

[12] C. Han; B.P. Carlin MCMC methods for computing Bayes factors: a comparison review, J. Amer. Statist. Assoc., Volume 96 (2001), pp. 1122-1132

[13] W.K. Hastings Monte Carlo sampling methods using Markov chains and their applications, Biometrika, Volume 57 (1970), pp. 97-109

[14] H. Jeffreys Theory of Probability, Oxford University Press, Oxford, 1961

[15] R.E. Kass; A.E. Raftery Bayes factors, J. Amer. Statist. Assoc., Volume 90 (1995), pp. 773-795

[16] X.L. Meng; W.H. Wong Simulating ratios of normalizing constants via a simple identity: a theoretical exploration, Statist. Sinica, Volume 6 (1996), pp. 831-860

[17] B.L.S. Prakasa Rao Nonparametric Functional Estimation, Academic Press, Orlando, 1983

[18] V. Rossi, Filtrage non linéaire par noyaux de convolution : application à un procédé de dépollution biologique, Thèse en science, Ecole Nationale Supérieure Agronomique de Montpellier, 2004

[19] V. Rossi; J.P. Vila Approche non paramétrique du filtrage de système non linéaire à temps discret et à paramètres inconnus, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005), pp. 759-764

[20] V. Rossi; J.P. Vila Nonlinear filtering in discrete time: a particle convolution approach, Pub. Inst. Stat. Univ. Paris, Volume L (2006) no. 3, pp. 71-102

[21] B.W. Silverman Density Estimation, Chapman and Hall, London, 1986

[22] H. Tanizaki Nonlinear Filters, Springer-Verlag, New York, 1993

[23] L. Tierney Markov chains for exploring posterior distributions (with discussion), Ann. Statist., Volume 22 (1994), pp. 1701-1762

Cité par Sources :

Commentaires - Politique