We consider a sequence of observations with a marginal distribution that is given by if and if . The parameter is the location of the change-point which must be estimated and may depend on the sequence length. We consider the general case in which the change-point can converge to one of the end-points of the interval as the sequence length n tends to infinity. The sequence can be long-range dependent, short-range dependent or independent and may be non-stationary. We study a class of non-parametric estimators and prove they are consistent and that the rate of convergence is . We also deal with the case in which the distance between the distributions and tends to zero as n tends to infinity.
On considère une suite d'observations avec des lois marginales vérifiant : pour et pour . Le paramètre , qui peut dépendre de la taille n de la suite d'observations, désigne la localisation du changement dans la loi marginale. On s'intéresse ici à l'estimation de ce paramètre. On considère le cas général où la position de rupture peut converger vers l'une des deux extrémités de l'intervalle lorsque la longueur de la suite tend vers l'infini. La suite peut être fortement dépendante, faiblement dépendante ou indépendante, voire même non stationnaire. On étudie une classe d'estimateurs non-paramètriques. On prouve qu'ils sont consistants et que leur vitesse de convergence est de . On traite aussi le cas où la distance entre les distributions et tend vers 0 quand n tend vers l'infini.
Accepted:
Published online:
Weilin Nie 1; Samir Ben Hariz 2; Jonathan Wylie 3; Qiang Zhang 3
@article{CRMATH_2009__347_7-8_425_0, author = {Weilin Nie and Samir Ben Hariz and Jonathan Wylie and Qiang Zhang}, title = {Detection of change-points near the end points of long-range dependent sequences}, journal = {Comptes Rendus. Math\'ematique}, pages = {425--428}, publisher = {Elsevier}, volume = {347}, number = {7-8}, year = {2009}, doi = {10.1016/j.crma.2009.02.002}, language = {en}, }
TY - JOUR AU - Weilin Nie AU - Samir Ben Hariz AU - Jonathan Wylie AU - Qiang Zhang TI - Detection of change-points near the end points of long-range dependent sequences JO - Comptes Rendus. Mathématique PY - 2009 SP - 425 EP - 428 VL - 347 IS - 7-8 PB - Elsevier DO - 10.1016/j.crma.2009.02.002 LA - en ID - CRMATH_2009__347_7-8_425_0 ER -
%0 Journal Article %A Weilin Nie %A Samir Ben Hariz %A Jonathan Wylie %A Qiang Zhang %T Detection of change-points near the end points of long-range dependent sequences %J Comptes Rendus. Mathématique %D 2009 %P 425-428 %V 347 %N 7-8 %I Elsevier %R 10.1016/j.crma.2009.02.002 %G en %F CRMATH_2009__347_7-8_425_0
Weilin Nie; Samir Ben Hariz; Jonathan Wylie; Qiang Zhang. Detection of change-points near the end points of long-range dependent sequences. Comptes Rendus. Mathématique, Volume 347 (2009) no. 7-8, pp. 425-428. doi : 10.1016/j.crma.2009.02.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.02.002/
[1] Rates of convergence for the change-point estimator for long-range dependent sequences, Statist. Probab. Lett., Volume 73 (2005), pp. 155-164
[2] Optimal rate of convergence for nonparametric change-point estimators for nonstationary sequences, Ann. Statist., Volume 35 (2007), pp. 1802-1826
[3] Nonparametric change-point estimation, Ann. Statist., Volume 16 (1988), pp. 188-197
[4] Limit Theorems in Change-Point Analysis, Wiley, Chichester, 1997
[5] The asymptotic behavior of some nonparametric change-point estimators, Ann. Statist., Volume 19 (1991), pp. 1471-1495
[6] On the rate of almost sure convergence of Dumbgen's change-point estimators, Statist. Probab. Lett., Volume 19 (1995), pp. 27-31
[7] Exponential and polynomial tailbounds for change-point estimators, J. Statist. Plann. Inference, Volume 92 (2001), pp. 73-109
[8] Boundary estimation based on set-indexed empirical processes, Nonparametric Statist., Volume 16 (2004), pp. 245-260
[9] Inference about the change-point in a sequence of random variables, Biometrika, Volume 57 (1970), pp. 1-17
[10] The effect of long-range dependence on change-point estimators, J. Statist. Plann. Inference, Volume 64 (1997), pp. 57-81
[11] Change-point in the mean of dependent observations, Statist. Probab. Lett., Volume 40 (1998), pp. 385-393
[12] W.L. Nie, S. Ben Hariz, J.J. Wylie, Q. Zhang, Detection of change-point near the end points of long-range dependent sequences, Preprint, 2008
[13] On almost sure behavior of change-point estimators (E. Carlstein; H.-G. Müller; D. Siegmund, eds.), Change-Point Problems, IMS, Hayward, CA, 1994, pp. 359-372
Cited by Sources:
Comments - Policy