[Structures hypercomplexes sur les algébroïdes de Courant]
Les structures hypercomplexes sur les algébroïdes de Courant unifient les structures symplectiques holomorphes et les structures hypercomplexes usuelles. Dans cette Note, nous prouvons l'équivalence de deux caractérisations des structures hypercomplexes sur les algébroïdes de Courant, l'une en termes de concomitants de Nijenhuis et l'autre en termes de connexions (presque) sans torsion pour lesquelles les trois structures complexes sont parallèles.
Hypercomplex structures on Courant algebroids unify holomorphic symplectic structures and usual hypercomplex structures. In this Note, we prove the equivalence of two characterizations of hypercomplex structures on Courant algebroids, one in terms of Nijenhuis concomitants and the other in terms of (almost) torsionfree connections for which each of the three complex structures is parallel.
Accepté le :
Publié le :
Mathieu Stiénon 1, 2
@article{CRMATH_2009__347_9-10_545_0, author = {Mathieu Sti\'enon}, title = {Hypercomplex structures on {Courant} algebroids}, journal = {Comptes Rendus. Math\'ematique}, pages = {545--550}, publisher = {Elsevier}, volume = {347}, number = {9-10}, year = {2009}, doi = {10.1016/j.crma.2009.02.020}, language = {en}, }
Mathieu Stiénon. Hypercomplex structures on Courant algebroids. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 545-550. doi : 10.1016/j.crma.2009.02.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.02.020/
[1] Generalized hyper-Kähler geometry and supersymmetry, Nuclear Phys. B, Volume 773 (2007) no. 3, pp. 172-183
[2] Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990) no. 2, pp. 631-661 MR MR998124 (90m:58065)
[3] Generalized hyperKähler manifolds in string theory, J. High Energy Phys. (4) (2007), p. 083 8 pp. (electronic)
[4] Manin triples for Lie bialgebroids, J. Differential Geom., Volume 45 (1997) no. 3, pp. 547-574 MR MR1472888 (98f:58203)
[5] Affine connections on manifolds with almost complex, quaternion or Hermitian structure, Jap. J. Math., Volume 26 (1956), pp. 43-77 MR MR0095290 (20 #1796a)
[6] Integrability conditions for almost quaternion structures, Hokkaido Math. J., Volume 1 (1972), pp. 63-86 MR MR0353197 (50 #5682)
[7] An affine connection in an almost quaternion manifold, J. Differential Geometry, Volume 8 (1973), pp. 341-347 MR MR0355892 (50 #8366)
Cité par Sources :
Commentaires - Politique