[Inversion asymptotique des matrices de Toeplitz dont le symbole présente une singularité]
Considérons la fonction où est une fonction régulière strictement positive et α un nombre réel tel que . Pour un tel α nous calculons l'inverse de la matrice de Toeplitz et nous obtenons le comportement asymptotique des coefficients de cet inverse quand N tend vers l'infini. Ceci nous permet de mettre en évidence deux nouvelles familles de noyaux pour , et pour . Nous obtenons également un développement asymptotique des coefficients des polynômes orthogonaux associés au poids . Pour nous répondons à une question énoncée par H. Kesten (1961).
We consider the function defined by with a regular strictly positive function and α a real number with . For such a number α we compute the inverse of the Toeplitz matrix and we obtain the asymptotic behaviour of the entries of this matrix when N goes to infinity. This inversion allows us to obtain two new families of kernels, for , and for . We obtain also an asymptotic expansion of the coefficients of the orthogonal polynomials associated to the function and we give an answer to a question of H. Kesten (1961).
Accepté le :
Publié le :
Philippe Rambour 1 ; Abdellatif Seghier 1
@article{CRMATH_2009__347_9-10_489_0, author = {Philippe Rambour and Abdellatif Seghier}, title = {Asymptotic inversion of {Toeplitz} matrices with one singularity in the symbol}, journal = {Comptes Rendus. Math\'ematique}, pages = {489--494}, publisher = {Elsevier}, volume = {347}, number = {9-10}, year = {2009}, doi = {10.1016/j.crma.2009.02.024}, language = {en}, }
TY - JOUR AU - Philippe Rambour AU - Abdellatif Seghier TI - Asymptotic inversion of Toeplitz matrices with one singularity in the symbol JO - Comptes Rendus. Mathématique PY - 2009 SP - 489 EP - 494 VL - 347 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2009.02.024 LA - en ID - CRMATH_2009__347_9-10_489_0 ER -
Philippe Rambour; Abdellatif Seghier. Asymptotic inversion of Toeplitz matrices with one singularity in the symbol. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 489-494. doi : 10.1016/j.crma.2009.02.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.02.024/
[1] Statistics for Long Memory Process, Chapman and Hall, 1994
[2] Inversion of Toeplitz matrices, Trans. Moscow Math. Soc., Volume 2 (1981), pp. 201-224
[3] The constants in the asymptotic formulas by Rambour and Seghier for the inverse of Toeplitz matrices, Integr. Equ. Oper. Theory, Volume 99 (2004), pp. 43-45
[4] Toeplitz eigenvalues through Green's kernels to higher-order Wirtnger–Sobolev inequalities (1, 2004) | arXiv
[5] Times Series: Theory and Methods, Springer Verlag, 1986
[6] Orthogonal Systems and Convolution Operators, Birkhäuser Verlag, Basel, 2003
[7] Toeplitz Forms and Their Applications, Chelsea, New York, 1984
[8] Séries de Fourier Absolument Convergentes, Springer Verlag, Berlin, Heidelberg, New York, 1970
[9] Random walk with absorbing barriers and Toeplitz forms, Illinois J. of Math., Volume 5 (1961), pp. 267-290
[10] Maximum entropy and the moment problem, Bulletin (New Series) of the American Mathematical Society, Volume 16 (1987) no. 1, pp. 47-77
[11] Exact and asymptotic inverse of the Toeplitz matrix with polynomial singular symbol, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003), pp. 399-400
[12] P. Rambour, A. Seghier, Inversion asymptotique des matrices de Toeplitz à symboles singuliers. Extension d'un résultat de H. Kesten. Prépublications de l'Université Paris-sud, 2003
[13] Formulas for inverses of Toeplitz matrices with polynomially singular symbols, Integr. Equ. Oper. Theory, Volume 99 (2004), pp. 83-114
[14] Théorèmes de trace de type Szegö dans le cas singulier, Bulletin des Sciences Mathématiques, Volume 129 (2005), pp. 149-174
[15] Inverse asymptotique des matrices de Toeplitz de symbole , , et noyaux intégraux, Bulletin des Sciences Mathématiques, à paraître (2008) | DOI
Cité par Sources :
Commentaires - Politique