Comptes Rendus
Partial Differential Equations/Mathematical Physics
Hypocoercivity for kinetic equations with linear relaxation terms
[Hypocoercivité pour des équations cinétiques avec termes de relaxation linéaires]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 511-516.

Cette Note est consacrée à une méthode simple pour démontrer l'hypocoercivité associée à une équation cinétique contenant un opérateur de relaxation linéaire ; il s'agit de construire une fonctionnelle de Lyapunov adaptée vérifiant une inégalité de type Gronwall. La méthode distingue clairement la coercivité au niveau microscopique, qui provient directement des propriétés de l'opérateur de relaxation, et une inégalité de trou spectral pour la densité spatiale, qui est reliée à la limite de diffusion. Elle améliore les résultats antérieurs. Notre approche est illustrée par le modèle de BGK linéaire et par un opérateur de relaxation qui correspond, au niveau macroscopique, à la diffusion rapide linéarisée.

This Note is devoted to a simple method for proving the hypocoercivity associated to a kinetic equation involving a linear time relaxation operator. It is based on the construction of an adapted Lyapunov functional satisfying a Gronwall-type inequality. The method clearly distinguishes the coercivity at microscopic level, which directly arises from the properties of the relaxation operator, and a spectral gap inequality at the macroscopic level for the spatial density, which is connected to the diffusion limit. It improves on previously known results. Our approach is illustrated by the linear BGK model and a relaxation operator which corresponds at macroscopic level to the linearized fast diffusion.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.02.025

Jean Dolbeault 1 ; Clément Mouhot 1 ; Christian Schmeiser 2

1 Ceremade (UMR CNRS no. 7534), Université Paris-Dauphine, place de-Lattre-de-Tassigny, 75775 Paris cedex 16, France
2 Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, 1090 Wien, Austria
@article{CRMATH_2009__347_9-10_511_0,
     author = {Jean Dolbeault and Cl\'ement Mouhot and Christian Schmeiser},
     title = {Hypocoercivity for kinetic equations with linear relaxation terms},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {511--516},
     publisher = {Elsevier},
     volume = {347},
     number = {9-10},
     year = {2009},
     doi = {10.1016/j.crma.2009.02.025},
     language = {en},
}
TY  - JOUR
AU  - Jean Dolbeault
AU  - Clément Mouhot
AU  - Christian Schmeiser
TI  - Hypocoercivity for kinetic equations with linear relaxation terms
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 511
EP  - 516
VL  - 347
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crma.2009.02.025
LA  - en
ID  - CRMATH_2009__347_9-10_511_0
ER  - 
%0 Journal Article
%A Jean Dolbeault
%A Clément Mouhot
%A Christian Schmeiser
%T Hypocoercivity for kinetic equations with linear relaxation terms
%J Comptes Rendus. Mathématique
%D 2009
%P 511-516
%V 347
%N 9-10
%I Elsevier
%R 10.1016/j.crma.2009.02.025
%G en
%F CRMATH_2009__347_9-10_511_0
Jean Dolbeault; Clément Mouhot; Christian Schmeiser. Hypocoercivity for kinetic equations with linear relaxation terms. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 511-516. doi : 10.1016/j.crma.2009.02.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.02.025/

[1] A. Blanchet; M. Bonforte; J. Dolbeault; G. Grillo; J.-L. Vázquez Hardy–Poincaré inequalities and applications to nonlinear diffusions, C. R. Acad. Sci. Paris, Ser. I, Volume 344 (2007), pp. 431-436

[2] J. Dolbeault; P. Markowich; D. Ölz; C. Schmeiser Non-linear diffusions as limit of kinetic equations with relaxation collision kernels, Arch. Ration. Mech. Anal., Volume 186 (2007), pp. 133-158

[3] J. Dolbeault, C. Mouhot, C. Schmeiser, Hypocoercivity and stability for a class of kinetic models with mass conservation and a confining potential. In preparation, 2009

[4] Y. Guo The Landau equation in a periodic box, Comm. Math. Phys., Volume 231 (2002), pp. 391-434

[5] F. Hérau Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal., Volume 46 (2006), pp. 349-359

[6] F. Hérau; F. Nier Isotropic hypoellipticity and trend to equilibrium for the Fokker–Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., Volume 171 (2004), pp. 151-218

[7] L. Hörmander Hypoelliptic second order differential equations, Acta Math., Volume 119 (1967), pp. 147-171

[8] C. Mouhot; L. Neumann Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, Volume 19 (2006), pp. 969-998

[9] S. Ukai On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proc. Japan Acad., Volume 50 (1974), pp. 179-184

[10] C. Villani Hypocoercive diffusion operators, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., Volume 10 (2007) no. 8, pp. 257-275

[11] C. Villani, Hypocoercivity, Memoirs Amer. Math. Soc. (2009), in press

  • Gayrat Toshpulatov Well-posedness and trend to equilibrium for the Vlasov-Poisson-Fokker-Planck system with a confining potential, Kinetic and Related Models, Volume 18 (2025) no. 1, pp. 35-75 | DOI:10.3934/krm.2024011 | Zbl:1552.35237
  • Katharina Schuh Global contractivity for Langevin dynamics with distribution-dependent forces and uniform in time propagation of chaos, Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, Volume 60 (2024) no. 2, pp. 753-789 | DOI:10.1214/22-aihp1337 | Zbl:7904814
  • Anibal Velozo Ruiz; Renato Velozo Ruiz Small data solutions for the Vlasov-Poisson system with a repulsive potential, Communications in Mathematical Physics, Volume 405 (2024) no. 3, p. 45 (Id/No 80) | DOI:10.1007/s00220-024-04970-3 | Zbl:1536.35327
  • Jason M. Altschuler; Sinho Chewi Faster high-accuracy log-concave sampling via algorithmic warm starts, Journal of the ACM, Volume 71 (2024) no. 3, p. 55 (Id/No 24) | DOI:10.1145/3653446 | Zbl:7980733
  • Bertram Düring; Josephine Evans; Marie-Therese Wolfram Steady states of an Elo-type rating model for players of varying strength, Kinetic and Related Models, Volume 17 (2024) no. 2, pp. 209-233 | DOI:10.3934/krm.2023020 | Zbl:1542.35387
  • Chaoen Zhang Hypocoercivity and global hypoellipticity for the kinetic Fokker-Planck equation in Hk spaces, Kinetic and Related Models, Volume 17 (2024) no. 3, pp. 394-435 | DOI:10.3934/krm.2023027 | Zbl:1541.82010
  • Emeric Bouin; Jean Dolbeault; Luca Ziviani L2 hypocoercivity methods for kinetic Fokker-Planck equations with factorised Gibbs states, Kolmogorov operators and their applications, Singapore: Springer, 2024, pp. 23-56 | DOI:10.1007/978-981-97-0225-1_2 | Zbl:7920786
  • Gabriel Stoltz Error estimates and variance reduction for nonequilibrium stochastic dynamics, Monte Carlo and quasi-Monte Carlo methods. Proceedings of the 15th international conference in Monte Carlo and quasi-Monte Carlo methods in scientific computing, MCQMC 2022, Linz, Austria, July 17–22, 2022, Cham: Springer, 2024, pp. 163-187 | DOI:10.1007/978-3-031-59762-6_7 | Zbl:8011716
  • Andreas Eberle; Francis Lörler Non-reversible lifts of reversible diffusion processes and relaxation times, Probability Theory and Related Fields (2024) | DOI:10.1007/s00440-024-01308-x
  • Yuzhe Zhu A note on asymptotics of linear dissipative kinetic equations in bounded domains, Pure and Applied Analysis, Volume 6 (2024) no. 4, pp. 977-994 | DOI:10.2140/paa.2024.6.977 | Zbl:7965857
  • Benedict J. Leimkuhler; Daniel Paulin; Peter A. Whalley Contraction and convergence rates for discretized kinetic Langevin dynamics, SIAM Journal on Numerical Analysis, Volume 62 (2024) no. 3, pp. 1226-1258 | DOI:10.1137/23m1556289 | Zbl:1545.65011
  • Anna Kazeykina; Zhenjie Ren; Xiaolu Tan; Junjian Yang Ergodicity of the underdamped mean-field Langevin dynamics, The Annals of Applied Probability, Volume 34 (2024) no. 3, pp. 3181-3226 | DOI:10.1214/23-aap2036 | Zbl:1551.37089
  • Samia Ben Ali; Mohamed Lazhar Tayeb Diffusion limit of a Boltzmann-Poisson system: case of general inflow boundary data profile, Tunisian Journal of Mathematics, Volume 6 (2024) no. 3, pp. 455-479 | DOI:10.2140/tunis.2024.6.455 | Zbl:1551.35023
  • Armand Bernou; Kleber Carrapatoso; Stéphane Mischler; Isabelle Tristani Hypocoercivity for kinetic linear equations in bounded domains with general Maxwell boundary condition, Annales de l'Institut Henri Poincaré C. Analyse Non Linéaire, Volume 40 (2023) no. 2, pp. 287-338 | DOI:10.4171/aihpc/44 | Zbl:1521.35132
  • Yu Cao; Jianfeng Lu; Lihan Wang On explicit L2-convergence rate estimate for underdamped Langevin dynamics, Archive for Rational Mechanics and Analysis, Volume 247 (2023) no. 5, p. 34 (Id/No 90) | DOI:10.1007/s00205-023-01922-4 | Zbl:7754930
  • Alexander Bertram; Martin Grothaus Convergence rate for degenerate partial and stochastic differential equations via weak Poincaré inequalities, Journal of Differential Equations, Volume 364 (2023), pp. 53-75 | DOI:10.1016/j.jde.2023.03.039 | Zbl:1526.37084
  • Franz Achleitner; Anton Arnold; Volker Mehrmann Hypocoercivity in Algebraically Constrained Partial Differential Equations with Application to Oseen Equations, Journal of Dynamics and Differential Equations (2023) | DOI:10.1007/s10884-023-10327-6
  • Grigorios A. Pavliotis; Gabriel Stoltz; Urbain Vaes Mobility estimation for Langevin dynamics using control variates, Multiscale Modeling Simulation, Volume 21 (2023) no. 2, pp. 680-715 | DOI:10.1137/22m1504378 | Zbl:1518.65015
  • M. H. Duong; M. Ottobre Non-reversible processes: GENERIC, hypocoercivity and fluctuations, Nonlinearity, Volume 36 (2023) no. 3, pp. 1617-1662 | DOI:10.1088/1361-6544/acb47b | Zbl:1516.35410
  • Marc Briant Hypocoercivity for perturbation theory and perturbation of hypocoercivity for confined Boltzmann-type collisional equations, SeMA Journal, Volume 80 (2023) no. 1, pp. 27-83 | DOI:10.1007/s40324-021-00281-y | Zbl:1537.35269
  • Lanoir Addala Large time asymptotics for Fermi-Dirac statistics coupled to a Poisson equation, SeMA Journal, Volume 80 (2023) no. 3, pp. 381-391 | DOI:10.1007/s40324-022-00303-3 | Zbl:1520.82034
  • Pierre Monmarché; Mathias Rousset; Pierre-André Zitt Exact targeting of Gibbs distributions using velocity-jump processes, Stochastic and Partial Differential Equations. Analysis and Computations, Volume 11 (2023) no. 3, pp. 908-947 | DOI:10.1007/s40072-022-00247-9 | Zbl:1520.60040
  • Franz Achleitner; Anton Arnold; Volker Mehrmann Hypocoercivity and controllability in linear semi-dissipative Hamiltonian ordinary differential equations and differential-algebraic equations, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, Volume 103 (2023) no. 7, p. 31 (Id/No e202100171) | DOI:10.1002/zamm.202100171 | Zbl:1536.37053
  • Étienne Bernard; Max Fathi; Antoine Levitt; Gabriel Stoltz Hypocoercivity with Schur complements, Annales Henri Lebesgue, Volume 5 (2022), pp. 523-557 | DOI:10.5802/ahl.129 | Zbl:1490.35494
  • Armand Bernou Convergence toward the steady state of a collisionless gas with Cercignani-Lampis boundary condition, Communications in Partial Differential Equations, Volume 47 (2022) no. 4, pp. 724-773 | DOI:10.1080/03605302.2021.1999975 | Zbl:1491.35380
  • Baoyan Sun; Kung-Chien Wu Global well-posedness and exponential stability for the fermion equation in weighted Sobolev spaces, Discrete and Continuous Dynamical Systems. Series B, Volume 27 (2022) no. 5, pp. 2537-2562 | DOI:10.3934/dcdsb.2021147 | Zbl:1489.82067
  • Benedikt Eisenhuth; Martin Grothaus Essential m-dissipativity for possibly degenerate generators of infinite-dimensional diffusion processes, Integral Equations and Operator Theory, Volume 94 (2022) no. 3, p. 29 (Id/No 28) | DOI:10.1007/s00020-022-02707-2 | Zbl:1494.35178
  • Kleber Carrapatoso; Mohamad Rachid; Isabelle Tristani Regularization estimates and hydrodynamical limit for the Landau equation, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 163 (2022), pp. 334-432 | DOI:10.1016/j.matpur.2022.05.009 | Zbl:1491.35310
  • Alexander Bertram; Martin Grothaus Essential m-dissipativity and hypocoercivity of Langevin dynamics with multiplicative noise, Journal of Evolution Equations, Volume 22 (2022) no. 1, p. 29 (Id/No 11) | DOI:10.1007/s00028-022-00773-y | Zbl:1503.37081
  • Sanchit Chaturvedi; Jonathan Luk Phase mixing for solutions to 1D transport equation in a confining potential, Kinetic and Related Models, Volume 15 (2022) no. 3, pp. 403-416 | DOI:10.3934/krm.2022002 | Zbl:1500.35034
  • Evan Camrud; David P. Herzog; Gabriel Stoltz; Maria Gordina Weighted L2-contractivity of Langevin dynamics with singular potentials, Nonlinearity, Volume 35 (2022) no. 2, pp. 998-1035 | DOI:10.1088/1361-6544/ac4152 | Zbl:1490.35496
  • Martin Grothaus; Maximilian Constantin Mertin Hypocoercivity of Langevin-type dynamics on abstract smooth manifolds, Stochastic Processes and their Applications, Volume 146 (2022), pp. 22-59 | DOI:10.1016/j.spa.2021.12.007 | Zbl:1484.58019
  • Jianfeng Lu; Lihan Wang On explicit L2-convergence rate estimate for piecewise deterministic Markov processes in MCMC algorithms, The Annals of Applied Probability, Volume 32 (2022) no. 2, pp. 1333-1361 | DOI:10.1214/21-aap1710 | Zbl:1490.60218
  • Pierre Monmarché High-dimensional MCMC with a standard splitting scheme for the underdamped Langevin diffusion, Electronic Journal of Statistics, Volume 15 (2021) no. 2, pp. 4117-4166 | DOI:10.1214/21-ejs1888 | Zbl:1471.65010
  • Arnaud Guillin; Wei Liu; Liming Wu; Chaoen Zhang The kinetic Fokker-Planck equation with mean field interaction, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 150 (2021), pp. 1-23 | DOI:10.1016/j.matpur.2021.04.001 | Zbl:1480.60235
  • Chuqi Cao The kinetic Fokker-Planck equation with general force, Journal of Evolution Equations, Volume 21 (2021) no. 2, pp. 2293-2337 | DOI:10.1007/s00028-021-00684-4 | Zbl:1476.35276
  • Wei Zhang Some new results on relative entropy production, time reversal, and optimal control of time-inhomogeneous diffusion processes, Journal of Mathematical Physics, Volume 62 (2021) no. 4, p. 26 (Id/No 043302) | DOI:10.1063/5.0038740 | Zbl:1467.82067
  • G. A. Pavliotis; G. Stoltz; U. Vaes Scaling limits for the generalized Langevin equation, Journal of Nonlinear Science, Volume 31 (2021) no. 1, p. 58 (Id/No 8) | DOI:10.1007/s00332-020-09671-4 | Zbl:1473.35057
  • Lanoir Addala; Jean Dolbeault; Xingyu Li; M. Lazhar Tayeb L2-hypocoercivity and large time asymptotics of the linearized Vlasov-Poisson-Fokker-Planck system, Journal of Statistical Physics, Volume 184 (2021) no. 1, p. 34 (Id/No 4) | DOI:10.1007/s10955-021-02784-4 | Zbl:1486.82034
  • Arnaud Guillin; Pierre Monmarché Uniform long-time and propagation of chaos estimates for mean field kinetic particles in non-convex landscapes, Journal of Statistical Physics, Volume 185 (2021) no. 2, p. 20 (Id/No 15) | DOI:10.1007/s10955-021-02839-6 | Zbl:1515.82069
  • E. Bouin; J. Dolbeault; L. Lafleche; C. Schmeiser Hypocoercivity and sub-exponential local equilibria, Monatshefte für Mathematik, Volume 194 (2021) no. 1, pp. 41-65 | DOI:10.1007/s00605-020-01483-8 | Zbl:1456.82811
  • Anton Arnold; Jean Dolbeault; Christian Schmeiser; Tobias Wöhrer Sharpening of decay rates in Fourier based hypocoercivity methods, Recent advances in kinetic equations and applications, Cham: Springer, 2021, pp. 1-50 | DOI:10.1007/978-3-030-82946-9_1 | Zbl:1497.35469
  • Christophe Andrieu; Alain Durmus; Nikolas Nüsken; Julien Roussel Hypocoercivity of piecewise deterministic Markov process-Monte Carlo, The Annals of Applied Probability, Volume 31 (2021) no. 5, pp. 2478-2517 | DOI:10.1214/20-aap1653 | Zbl:1476.60124
  • Robert D. Skeel; Carsten Hartmann Choice of damping coefficient in Langevin dynamics, The European Physical Journal B, Volume 94 (2021) no. 9 | DOI:10.1140/epjb/s10051-021-00182-z
  • Gianluca Favre; Christian Schmeiser Hypocoercivity and fast reaction limit for linear reaction networks with kinetic transport, Journal of Statistical Physics, Volume 178 (2020) no. 6, pp. 1319-1335 | DOI:10.1007/s10955-020-02503-5 | Zbl:1437.35524
  • Emeric Bouin; Jean Dolbeault; Christian Schmeiser Diffusion and kinetic transport with very weak confinement, Kinetic and Related Models, Volume 13 (2020) no. 2, pp. 345-371 | DOI:10.3934/krm.2020012 | Zbl:1434.35237
  • Yulong Lu; Jonathan C. Mattingly Geometric ergodicity of Langevin dynamics with Coulomb interactions, Nonlinearity, Volume 33 (2020) no. 2, pp. 675-699 | DOI:10.1088/1361-6544/ab514a | Zbl:1427.82024
  • Emeric Bouin; Jean Dolbeault; Stéphane Mischler; Clément Mouhot; Christian Schmeiser Hypocoercivity without confinement, Pure and Applied Analysis, Volume 2 (2020) no. 2, pp. 203-232 | DOI:10.2140/paa.2020.2.203 | Zbl:1448.82035
  • Benedict Leimkuhler; Matthias Sachs; Gabriel Stoltz Hypocoercivity properties of adaptive Langevin dynamics, SIAM Journal on Applied Mathematics, Volume 80 (2020) no. 3, pp. 1197-1222 | DOI:10.1137/19m1291649 | Zbl:1434.60236
  • Jeremiah Birrell; Luc Rey-Bellet Uncertainty quantification for Markov processes via variational principles and functional inequalities, SIAM/ASA Journal on Uncertainty Quantification, Volume 8 (2020), pp. 539-572 | DOI:10.1137/19m1237429 | Zbl:1501.47073
  • A. Iacobucci; S. Olla; G. Stoltz Convergence rates for nonequilibrium Langevin dynamics, Annales Mathématiques du Québec, Volume 43 (2019) no. 1, pp. 73-98 | DOI:10.1007/s40316-017-0091-0 | Zbl:1419.82044
  • David P. Herzog; Jonathan C. Mattingly Ergodicity and Lyapunov functions for Langevin dynamics with singular potentials, Communications on Pure and Applied Mathematics, Volume 72 (2019) no. 10, pp. 2231-2255 | DOI:10.1002/cpa.21862 | Zbl:1436.60056
  • Pierre Monmarché Generalized Γ calculus and application to interacting particles on a graph, Potential Analysis, Volume 50 (2019) no. 3, pp. 439-466 | DOI:10.1007/s11118-018-9689-3 | Zbl:1411.58013
  • Martin Grothaus; Feng-Yu Wang Weak Poincaré inequalities for convergence rate of degenerate diffusion processes, The Annals of Probability, Volume 47 (2019) no. 5, pp. 2930-2952 | DOI:10.1214/18-aop1328 | Zbl:1472.60096
  • Julien Roussel; Gabriel Stoltz Spectral methods for Langevin dynamics and associated error estimates, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 52 (2018) no. 3, pp. 1051-1083 | DOI:10.1051/m2an/2017044 | Zbl:1404.82050
  • Martin Grothaus; Maximilian Mertin; Patrik Stilgenbauer Hypocoercivity for geometric Langevin equations motivated by fibre lay‐down models arising in industrial application, GAMM-Mitteilungen, Volume 41 (2018) no. 4 | DOI:10.1002/gamm.201800011
  • Franz Achleitner; Anton Arnold; Eric A. Carlen On multi-dimensional hypocoercive BGK models, Kinetic and Related Models, Volume 11 (2018) no. 4, pp. 953-1009 | DOI:10.3934/krm.2018038 | Zbl:1405.82023
  • Jean Dolbeault; Xingyu Li φ-entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations, M3AS. Mathematical Models Methods in Applied Sciences, Volume 28 (2018) no. 13, pp. 2637-2666 | DOI:10.1142/s0218202518500574 | Zbl:1411.82032
  • Gabriel Stoltz; Zofia Trstanova Langevin dynamics with general kinetic energies, Multiscale Modeling Simulation, Volume 16 (2018) no. 2, pp. 777-806 | DOI:10.1137/16m110575x | Zbl:1392.82004
  • Gabriel Stoltz; Eric Vanden-Eijnden Longtime convergence of the temperature-accelerated molecular dynamics method, Nonlinearity, Volume 31 (2018) no. 8, pp. 3748-3769 | DOI:10.1088/1361-6544/aac541 | Zbl:1397.82005
  • Pierre Monmarché Hypocoercivity in metastable settings and kinetic simulated annealing, Probability Theory and Related Fields, Volume 172 (2018) no. 3-4, pp. 1215-1248 | DOI:10.1007/s00440-018-0828-y | Zbl:1404.60120
  • Feng-Yu Wang Hypercontractivity and applications for stochastic Hamiltonian systems, Journal of Functional Analysis, Volume 272 (2017) no. 12, pp. 5360-5383 | DOI:10.1016/j.jfa.2017.03.015 | Zbl:1407.60092
  • Axel Klar; Lisa Kreusser; Oliver Tse Trend to equilibrium for a delay Vlasov-Fokker-Planck equation and explicit decay estimates, SIAM Journal on Mathematical Analysis, Volume 49 (2017) no. 4, pp. 3277-3298 | DOI:10.1137/15m105402x | Zbl:1377.35024
  • Pierre Monmarché Long-time behaviour and propagation of chaos for mean field kinetic particles, Stochastic Processes and their Applications, Volume 127 (2017) no. 6, pp. 1721-1737 | DOI:10.1016/j.spa.2016.10.003 | Zbl:1367.60121
  • Virgile Robbe Small eigenvalues of the low temperature linear relaxation Boltzmann equation with a confining potential, Annales Henri Poincaré, Volume 17 (2016) no. 4, pp. 937-952 | DOI:10.1007/s00023-015-0410-4 | Zbl:1343.35182
  • S. Mischler; J. Scher Spectral analysis of semigroups and growth-fragmentation equations, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 33 (2016) no. 3, pp. 849-898 | DOI:10.1016/j.anihpc.2015.01.007 | Zbl:1357.47044
  • S. Mischler; C. Mouhot Exponential stability of slowly decaying solutions to the kinetic-Fokker-Planck equation, Archive for Rational Mechanics and Analysis, Volume 221 (2016) no. 2, pp. 677-723 | DOI:10.1007/s00205-016-0972-4 | Zbl:1338.35430
  • Franz Achleitner; Anton Arnold; Eric A. Carlen On linear hypocoercive BGK models, From particle systems to partial differential equations III. Particle systems and PDEs III, Braga, Portugal, December 2014, Cham: Springer, 2016, pp. 1-37 | DOI:10.1007/978-3-319-32144-8_1 | Zbl:1353.35113
  • Lukas Neumann; Christian Schmeiser A kinetic reaction model: decay to equilibrium and macroscopic limit, Kinetic and Related Models, Volume 9 (2016) no. 3, pp. 571-585 | DOI:10.3934/krm.2016007 | Zbl:1356.76296
  • Luca Gerardo-Giorda; Minh-Binh Tran Parallelizing the Kolmogorov Fokker Planck equation, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 49 (2015) no. 2, pp. 395-420 | DOI:10.1051/m2an/2014038 | Zbl:1336.35333
  • Jean Dolbeault; Clément Mouhot; Christian Schmeiser Hypocoercivity for linear kinetic equations conserving mass, Transactions of the American Mathematical Society, Volume 367 (2015) no. 6, pp. 3807-3828 | DOI:10.1090/s0002-9947-2015-06012-7 | Zbl:1342.82115
  • Martin Grothaus; Patrik Stilgenbauer Hypocoercivity for Kolmogorov backward evolution equations and applications, Journal of Functional Analysis, Volume 267 (2014) no. 10, pp. 3515-3556 | DOI:10.1016/j.jfa.2014.08.019 | Zbl:1347.37007
  • Pierre Monmarché Hypocoercive relaxation to equilibrium for some kinetic models, Kinetic Related Models, Volume 7 (2014) no. 2, p. 341 | DOI:10.3934/krm.2014.7.341
  • Jean Dolbeault; Axel Klar; Clément Mouhot; Christian Schmeiser Exponential rate of convergence to equilibrium for a model describing fiber lay-down processes, AMRX. Applied Mathematics Research eXpress, Volume 2013 (2013) no. 2, pp. 165-175 | DOI:10.1093/amrx/abs015 | Zbl:1278.82044
  • Étienne Bernard; Francesco Salvarani Optimal estimate of the spectral gap for the degenerate Goldstein-Taylor model, Journal of Statistical Physics, Volume 153 (2013) no. 2, pp. 363-375 | DOI:10.1007/s10955-013-0825-6 | Zbl:1291.35157
  • Axel Klar; Johannes Maringer; Raimund Wegener A smooth 3D model for fiber lay-down in nonwoven production processes, Kinetic Related Models, Volume 5 (2012) no. 1, p. 97 | DOI:10.3934/krm.2012.5.97
  • Jean Dolbeault; Bruno Volzone Improved Poincaré inequalities, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 75 (2012) no. 16, pp. 5985-6001 | DOI:10.1016/j.na.2012.05.008 | Zbl:1250.26018
  • Renjun Duan; Robert M. Strain Optimal time decay of the Vlasov-Poisson-Boltzmann system in R3, Archive for Rational Mechanics and Analysis, Volume 199 (2011) no. 1, pp. 291-328 | DOI:10.1007/s00205-010-0318-6 | Zbl:1232.35169
  • Renjun Duan; Robert M. Strain Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space, Communications on Pure and Applied Mathematics, Volume 64 (2011) no. 11, pp. 1497-1546 | DOI:10.1002/cpa.20381 | Zbl:1244.35010
  • Renjun Duan Hypocoercivity of linear degenerately dissipative kinetic equations, Nonlinearity, Volume 24 (2011) no. 8, p. 2165 | DOI:10.1088/0951-7715/24/8/003
  • Renjun Duan; Massimo Fornasier; Giuseppe Toscani A kinetic flocking model with diffusion, Communications in Mathematical Physics, Volume 300 (2010) no. 1, pp. 95-145 | DOI:10.1007/s00220-010-1110-z | Zbl:1213.35395
  • Jean Dolbeault; Clément Mouhot; Christian Schmeiser Hypocoercivity for kinetic equations with linear relaxation terms, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 347 (2009) no. 9-10, pp. 511-516 | DOI:10.1016/j.crma.2009.02.025 | Zbl:1177.35054

Cité par 82 documents. Sources : Crossref, zbMATH

Commentaires - Politique