[Hypocoercivité pour des équations cinétiques avec termes de relaxation linéaires]
Cette Note est consacrée à une méthode simple pour démontrer l'hypocoercivité associée à une équation cinétique contenant un opérateur de relaxation linéaire ; il s'agit de construire une fonctionnelle de Lyapunov adaptée vérifiant une inégalité de type Gronwall. La méthode distingue clairement la coercivité au niveau microscopique, qui provient directement des propriétés de l'opérateur de relaxation, et une inégalité de trou spectral pour la densité spatiale, qui est reliée à la limite de diffusion. Elle améliore les résultats antérieurs. Notre approche est illustrée par le modèle de BGK linéaire et par un opérateur de relaxation qui correspond, au niveau macroscopique, à la diffusion rapide linéarisée.
This Note is devoted to a simple method for proving the hypocoercivity associated to a kinetic equation involving a linear time relaxation operator. It is based on the construction of an adapted Lyapunov functional satisfying a Gronwall-type inequality. The method clearly distinguishes the coercivity at microscopic level, which directly arises from the properties of the relaxation operator, and a spectral gap inequality at the macroscopic level for the spatial density, which is connected to the diffusion limit. It improves on previously known results. Our approach is illustrated by the linear BGK model and a relaxation operator which corresponds at macroscopic level to the linearized fast diffusion.
Accepté le :
Publié le :
Jean Dolbeault 1 ; Clément Mouhot 1 ; Christian Schmeiser 2
@article{CRMATH_2009__347_9-10_511_0, author = {Jean Dolbeault and Cl\'ement Mouhot and Christian Schmeiser}, title = {Hypocoercivity for kinetic equations with linear relaxation terms}, journal = {Comptes Rendus. Math\'ematique}, pages = {511--516}, publisher = {Elsevier}, volume = {347}, number = {9-10}, year = {2009}, doi = {10.1016/j.crma.2009.02.025}, language = {en}, }
TY - JOUR AU - Jean Dolbeault AU - Clément Mouhot AU - Christian Schmeiser TI - Hypocoercivity for kinetic equations with linear relaxation terms JO - Comptes Rendus. Mathématique PY - 2009 SP - 511 EP - 516 VL - 347 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2009.02.025 LA - en ID - CRMATH_2009__347_9-10_511_0 ER -
Jean Dolbeault; Clément Mouhot; Christian Schmeiser. Hypocoercivity for kinetic equations with linear relaxation terms. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 511-516. doi : 10.1016/j.crma.2009.02.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.02.025/
[1] Hardy–Poincaré inequalities and applications to nonlinear diffusions, C. R. Acad. Sci. Paris, Ser. I, Volume 344 (2007), pp. 431-436
[2] Non-linear diffusions as limit of kinetic equations with relaxation collision kernels, Arch. Ration. Mech. Anal., Volume 186 (2007), pp. 133-158
[3] J. Dolbeault, C. Mouhot, C. Schmeiser, Hypocoercivity and stability for a class of kinetic models with mass conservation and a confining potential. In preparation, 2009
[4] The Landau equation in a periodic box, Comm. Math. Phys., Volume 231 (2002), pp. 391-434
[5] Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal., Volume 46 (2006), pp. 349-359
[6] Isotropic hypoellipticity and trend to equilibrium for the Fokker–Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., Volume 171 (2004), pp. 151-218
[7] Hypoelliptic second order differential equations, Acta Math., Volume 119 (1967), pp. 147-171
[8] Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, Volume 19 (2006), pp. 969-998
[9] On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proc. Japan Acad., Volume 50 (1974), pp. 179-184
[10] Hypocoercive diffusion operators, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., Volume 10 (2007) no. 8, pp. 257-275
[11] C. Villani, Hypocoercivity, Memoirs Amer. Math. Soc. (2009), in press
- Well-posedness and trend to equilibrium for the Vlasov-Poisson-Fokker-Planck system with a confining potential, Kinetic and Related Models, Volume 18 (2025) no. 1, pp. 35-75 | DOI:10.3934/krm.2024011 | Zbl:1552.35237
- Global contractivity for Langevin dynamics with distribution-dependent forces and uniform in time propagation of chaos, Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, Volume 60 (2024) no. 2, pp. 753-789 | DOI:10.1214/22-aihp1337 | Zbl:7904814
- Small data solutions for the Vlasov-Poisson system with a repulsive potential, Communications in Mathematical Physics, Volume 405 (2024) no. 3, p. 45 (Id/No 80) | DOI:10.1007/s00220-024-04970-3 | Zbl:1536.35327
- Faster high-accuracy log-concave sampling via algorithmic warm starts, Journal of the ACM, Volume 71 (2024) no. 3, p. 55 (Id/No 24) | DOI:10.1145/3653446 | Zbl:7980733
- Steady states of an Elo-type rating model for players of varying strength, Kinetic and Related Models, Volume 17 (2024) no. 2, pp. 209-233 | DOI:10.3934/krm.2023020 | Zbl:1542.35387
- Hypocoercivity and global hypoellipticity for the kinetic Fokker-Planck equation in
spaces, Kinetic and Related Models, Volume 17 (2024) no. 3, pp. 394-435 | DOI:10.3934/krm.2023027 | Zbl:1541.82010 -
hypocoercivity methods for kinetic Fokker-Planck equations with factorised Gibbs states, Kolmogorov operators and their applications, Singapore: Springer, 2024, pp. 23-56 | DOI:10.1007/978-981-97-0225-1_2 | Zbl:7920786 - Error estimates and variance reduction for nonequilibrium stochastic dynamics, Monte Carlo and quasi-Monte Carlo methods. Proceedings of the 15th international conference in Monte Carlo and quasi-Monte Carlo methods in scientific computing, MCQMC 2022, Linz, Austria, July 17–22, 2022, Cham: Springer, 2024, pp. 163-187 | DOI:10.1007/978-3-031-59762-6_7 | Zbl:8011716
- Non-reversible lifts of reversible diffusion processes and relaxation times, Probability Theory and Related Fields (2024) | DOI:10.1007/s00440-024-01308-x
- A note on asymptotics of linear dissipative kinetic equations in bounded domains, Pure and Applied Analysis, Volume 6 (2024) no. 4, pp. 977-994 | DOI:10.2140/paa.2024.6.977 | Zbl:7965857
- Contraction and convergence rates for discretized kinetic Langevin dynamics, SIAM Journal on Numerical Analysis, Volume 62 (2024) no. 3, pp. 1226-1258 | DOI:10.1137/23m1556289 | Zbl:1545.65011
- Ergodicity of the underdamped mean-field Langevin dynamics, The Annals of Applied Probability, Volume 34 (2024) no. 3, pp. 3181-3226 | DOI:10.1214/23-aap2036 | Zbl:1551.37089
- Diffusion limit of a Boltzmann-Poisson system: case of general inflow boundary data profile, Tunisian Journal of Mathematics, Volume 6 (2024) no. 3, pp. 455-479 | DOI:10.2140/tunis.2024.6.455 | Zbl:1551.35023
- Hypocoercivity for kinetic linear equations in bounded domains with general Maxwell boundary condition, Annales de l'Institut Henri Poincaré C. Analyse Non Linéaire, Volume 40 (2023) no. 2, pp. 287-338 | DOI:10.4171/aihpc/44 | Zbl:1521.35132
- On explicit
-convergence rate estimate for underdamped Langevin dynamics, Archive for Rational Mechanics and Analysis, Volume 247 (2023) no. 5, p. 34 (Id/No 90) | DOI:10.1007/s00205-023-01922-4 | Zbl:7754930 - Convergence rate for degenerate partial and stochastic differential equations via weak Poincaré inequalities, Journal of Differential Equations, Volume 364 (2023), pp. 53-75 | DOI:10.1016/j.jde.2023.03.039 | Zbl:1526.37084
- Hypocoercivity in Algebraically Constrained Partial Differential Equations with Application to Oseen Equations, Journal of Dynamics and Differential Equations (2023) | DOI:10.1007/s10884-023-10327-6
- Mobility estimation for Langevin dynamics using control variates, Multiscale Modeling Simulation, Volume 21 (2023) no. 2, pp. 680-715 | DOI:10.1137/22m1504378 | Zbl:1518.65015
- Non-reversible processes: GENERIC, hypocoercivity and fluctuations, Nonlinearity, Volume 36 (2023) no. 3, pp. 1617-1662 | DOI:10.1088/1361-6544/acb47b | Zbl:1516.35410
- Hypocoercivity for perturbation theory and perturbation of hypocoercivity for confined Boltzmann-type collisional equations, S
MA Journal, Volume 80 (2023) no. 1, pp. 27-83 | DOI:10.1007/s40324-021-00281-y | Zbl:1537.35269 - Large time asymptotics for Fermi-Dirac statistics coupled to a Poisson equation, S
MA Journal, Volume 80 (2023) no. 3, pp. 381-391 | DOI:10.1007/s40324-022-00303-3 | Zbl:1520.82034 - Exact targeting of Gibbs distributions using velocity-jump processes, Stochastic and Partial Differential Equations. Analysis and Computations, Volume 11 (2023) no. 3, pp. 908-947 | DOI:10.1007/s40072-022-00247-9 | Zbl:1520.60040
- Hypocoercivity and controllability in linear semi-dissipative Hamiltonian ordinary differential equations and differential-algebraic equations, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, Volume 103 (2023) no. 7, p. 31 (Id/No e202100171) | DOI:10.1002/zamm.202100171 | Zbl:1536.37053
- Hypocoercivity with Schur complements, Annales Henri Lebesgue, Volume 5 (2022), pp. 523-557 | DOI:10.5802/ahl.129 | Zbl:1490.35494
- Convergence toward the steady state of a collisionless gas with Cercignani-Lampis boundary condition, Communications in Partial Differential Equations, Volume 47 (2022) no. 4, pp. 724-773 | DOI:10.1080/03605302.2021.1999975 | Zbl:1491.35380
- Global well-posedness and exponential stability for the fermion equation in weighted Sobolev spaces, Discrete and Continuous Dynamical Systems. Series B, Volume 27 (2022) no. 5, pp. 2537-2562 | DOI:10.3934/dcdsb.2021147 | Zbl:1489.82067
- Essential m-dissipativity for possibly degenerate generators of infinite-dimensional diffusion processes, Integral Equations and Operator Theory, Volume 94 (2022) no. 3, p. 29 (Id/No 28) | DOI:10.1007/s00020-022-02707-2 | Zbl:1494.35178
- Regularization estimates and hydrodynamical limit for the Landau equation, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 163 (2022), pp. 334-432 | DOI:10.1016/j.matpur.2022.05.009 | Zbl:1491.35310
- Essential m-dissipativity and hypocoercivity of Langevin dynamics with multiplicative noise, Journal of Evolution Equations, Volume 22 (2022) no. 1, p. 29 (Id/No 11) | DOI:10.1007/s00028-022-00773-y | Zbl:1503.37081
- Phase mixing for solutions to 1D transport equation in a confining potential, Kinetic and Related Models, Volume 15 (2022) no. 3, pp. 403-416 | DOI:10.3934/krm.2022002 | Zbl:1500.35034
- Weighted
-contractivity of Langevin dynamics with singular potentials, Nonlinearity, Volume 35 (2022) no. 2, pp. 998-1035 | DOI:10.1088/1361-6544/ac4152 | Zbl:1490.35496 - Hypocoercivity of Langevin-type dynamics on abstract smooth manifolds, Stochastic Processes and their Applications, Volume 146 (2022), pp. 22-59 | DOI:10.1016/j.spa.2021.12.007 | Zbl:1484.58019
- On explicit
-convergence rate estimate for piecewise deterministic Markov processes in MCMC algorithms, The Annals of Applied Probability, Volume 32 (2022) no. 2, pp. 1333-1361 | DOI:10.1214/21-aap1710 | Zbl:1490.60218 - High-dimensional MCMC with a standard splitting scheme for the underdamped Langevin diffusion, Electronic Journal of Statistics, Volume 15 (2021) no. 2, pp. 4117-4166 | DOI:10.1214/21-ejs1888 | Zbl:1471.65010
- The kinetic Fokker-Planck equation with mean field interaction, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 150 (2021), pp. 1-23 | DOI:10.1016/j.matpur.2021.04.001 | Zbl:1480.60235
- The kinetic Fokker-Planck equation with general force, Journal of Evolution Equations, Volume 21 (2021) no. 2, pp. 2293-2337 | DOI:10.1007/s00028-021-00684-4 | Zbl:1476.35276
- Some new results on relative entropy production, time reversal, and optimal control of time-inhomogeneous diffusion processes, Journal of Mathematical Physics, Volume 62 (2021) no. 4, p. 26 (Id/No 043302) | DOI:10.1063/5.0038740 | Zbl:1467.82067
- Scaling limits for the generalized Langevin equation, Journal of Nonlinear Science, Volume 31 (2021) no. 1, p. 58 (Id/No 8) | DOI:10.1007/s00332-020-09671-4 | Zbl:1473.35057
-
-hypocoercivity and large time asymptotics of the linearized Vlasov-Poisson-Fokker-Planck system, Journal of Statistical Physics, Volume 184 (2021) no. 1, p. 34 (Id/No 4) | DOI:10.1007/s10955-021-02784-4 | Zbl:1486.82034 - Uniform long-time and propagation of chaos estimates for mean field kinetic particles in non-convex landscapes, Journal of Statistical Physics, Volume 185 (2021) no. 2, p. 20 (Id/No 15) | DOI:10.1007/s10955-021-02839-6 | Zbl:1515.82069
- Hypocoercivity and sub-exponential local equilibria, Monatshefte für Mathematik, Volume 194 (2021) no. 1, pp. 41-65 | DOI:10.1007/s00605-020-01483-8 | Zbl:1456.82811
- Sharpening of decay rates in Fourier based hypocoercivity methods, Recent advances in kinetic equations and applications, Cham: Springer, 2021, pp. 1-50 | DOI:10.1007/978-3-030-82946-9_1 | Zbl:1497.35469
- Hypocoercivity of piecewise deterministic Markov process-Monte Carlo, The Annals of Applied Probability, Volume 31 (2021) no. 5, pp. 2478-2517 | DOI:10.1214/20-aap1653 | Zbl:1476.60124
- Choice of damping coefficient in Langevin dynamics, The European Physical Journal B, Volume 94 (2021) no. 9 | DOI:10.1140/epjb/s10051-021-00182-z
- Hypocoercivity and fast reaction limit for linear reaction networks with kinetic transport, Journal of Statistical Physics, Volume 178 (2020) no. 6, pp. 1319-1335 | DOI:10.1007/s10955-020-02503-5 | Zbl:1437.35524
- Diffusion and kinetic transport with very weak confinement, Kinetic and Related Models, Volume 13 (2020) no. 2, pp. 345-371 | DOI:10.3934/krm.2020012 | Zbl:1434.35237
- Geometric ergodicity of Langevin dynamics with Coulomb interactions, Nonlinearity, Volume 33 (2020) no. 2, pp. 675-699 | DOI:10.1088/1361-6544/ab514a | Zbl:1427.82024
- Hypocoercivity without confinement, Pure and Applied Analysis, Volume 2 (2020) no. 2, pp. 203-232 | DOI:10.2140/paa.2020.2.203 | Zbl:1448.82035
- Hypocoercivity properties of adaptive Langevin dynamics, SIAM Journal on Applied Mathematics, Volume 80 (2020) no. 3, pp. 1197-1222 | DOI:10.1137/19m1291649 | Zbl:1434.60236
- Uncertainty quantification for Markov processes via variational principles and functional inequalities, SIAM/ASA Journal on Uncertainty Quantification, Volume 8 (2020), pp. 539-572 | DOI:10.1137/19m1237429 | Zbl:1501.47073
- Convergence rates for nonequilibrium Langevin dynamics, Annales Mathématiques du Québec, Volume 43 (2019) no. 1, pp. 73-98 | DOI:10.1007/s40316-017-0091-0 | Zbl:1419.82044
- Ergodicity and Lyapunov functions for Langevin dynamics with singular potentials, Communications on Pure and Applied Mathematics, Volume 72 (2019) no. 10, pp. 2231-2255 | DOI:10.1002/cpa.21862 | Zbl:1436.60056
- Generalized
calculus and application to interacting particles on a graph, Potential Analysis, Volume 50 (2019) no. 3, pp. 439-466 | DOI:10.1007/s11118-018-9689-3 | Zbl:1411.58013 - Weak Poincaré inequalities for convergence rate of degenerate diffusion processes, The Annals of Probability, Volume 47 (2019) no. 5, pp. 2930-2952 | DOI:10.1214/18-aop1328 | Zbl:1472.60096
- Spectral methods for Langevin dynamics and associated error estimates, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 52 (2018) no. 3, pp. 1051-1083 | DOI:10.1051/m2an/2017044 | Zbl:1404.82050
- Hypocoercivity for geometric Langevin equations motivated by fibre lay‐down models arising in industrial application, GAMM-Mitteilungen, Volume 41 (2018) no. 4 | DOI:10.1002/gamm.201800011
- On multi-dimensional hypocoercive BGK models, Kinetic and Related Models, Volume 11 (2018) no. 4, pp. 953-1009 | DOI:10.3934/krm.2018038 | Zbl:1405.82023
-
-entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations, M AS. Mathematical Models Methods in Applied Sciences, Volume 28 (2018) no. 13, pp. 2637-2666 | DOI:10.1142/s0218202518500574 | Zbl:1411.82032 - Langevin dynamics with general kinetic energies, Multiscale Modeling Simulation, Volume 16 (2018) no. 2, pp. 777-806 | DOI:10.1137/16m110575x | Zbl:1392.82004
- Longtime convergence of the temperature-accelerated molecular dynamics method, Nonlinearity, Volume 31 (2018) no. 8, pp. 3748-3769 | DOI:10.1088/1361-6544/aac541 | Zbl:1397.82005
- Hypocoercivity in metastable settings and kinetic simulated annealing, Probability Theory and Related Fields, Volume 172 (2018) no. 3-4, pp. 1215-1248 | DOI:10.1007/s00440-018-0828-y | Zbl:1404.60120
- Hypercontractivity and applications for stochastic Hamiltonian systems, Journal of Functional Analysis, Volume 272 (2017) no. 12, pp. 5360-5383 | DOI:10.1016/j.jfa.2017.03.015 | Zbl:1407.60092
- Trend to equilibrium for a delay Vlasov-Fokker-Planck equation and explicit decay estimates, SIAM Journal on Mathematical Analysis, Volume 49 (2017) no. 4, pp. 3277-3298 | DOI:10.1137/15m105402x | Zbl:1377.35024
- Long-time behaviour and propagation of chaos for mean field kinetic particles, Stochastic Processes and their Applications, Volume 127 (2017) no. 6, pp. 1721-1737 | DOI:10.1016/j.spa.2016.10.003 | Zbl:1367.60121
- Small eigenvalues of the low temperature linear relaxation Boltzmann equation with a confining potential, Annales Henri Poincaré, Volume 17 (2016) no. 4, pp. 937-952 | DOI:10.1007/s00023-015-0410-4 | Zbl:1343.35182
- Spectral analysis of semigroups and growth-fragmentation equations, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 33 (2016) no. 3, pp. 849-898 | DOI:10.1016/j.anihpc.2015.01.007 | Zbl:1357.47044
- Exponential stability of slowly decaying solutions to the kinetic-Fokker-Planck equation, Archive for Rational Mechanics and Analysis, Volume 221 (2016) no. 2, pp. 677-723 | DOI:10.1007/s00205-016-0972-4 | Zbl:1338.35430
- On linear hypocoercive BGK models, From particle systems to partial differential equations III. Particle systems and PDEs III, Braga, Portugal, December 2014, Cham: Springer, 2016, pp. 1-37 | DOI:10.1007/978-3-319-32144-8_1 | Zbl:1353.35113
- A kinetic reaction model: decay to equilibrium and macroscopic limit, Kinetic and Related Models, Volume 9 (2016) no. 3, pp. 571-585 | DOI:10.3934/krm.2016007 | Zbl:1356.76296
- Parallelizing the Kolmogorov Fokker Planck equation, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 49 (2015) no. 2, pp. 395-420 | DOI:10.1051/m2an/2014038 | Zbl:1336.35333
- Hypocoercivity for linear kinetic equations conserving mass, Transactions of the American Mathematical Society, Volume 367 (2015) no. 6, pp. 3807-3828 | DOI:10.1090/s0002-9947-2015-06012-7 | Zbl:1342.82115
- Hypocoercivity for Kolmogorov backward evolution equations and applications, Journal of Functional Analysis, Volume 267 (2014) no. 10, pp. 3515-3556 | DOI:10.1016/j.jfa.2014.08.019 | Zbl:1347.37007
- Hypocoercive relaxation to equilibrium for some kinetic models, Kinetic Related Models, Volume 7 (2014) no. 2, p. 341 | DOI:10.3934/krm.2014.7.341
- Exponential rate of convergence to equilibrium for a model describing fiber lay-down processes, AMRX. Applied Mathematics Research eXpress, Volume 2013 (2013) no. 2, pp. 165-175 | DOI:10.1093/amrx/abs015 | Zbl:1278.82044
- Optimal estimate of the spectral gap for the degenerate Goldstein-Taylor model, Journal of Statistical Physics, Volume 153 (2013) no. 2, pp. 363-375 | DOI:10.1007/s10955-013-0825-6 | Zbl:1291.35157
- A smooth 3D model for fiber lay-down in nonwoven production processes, Kinetic Related Models, Volume 5 (2012) no. 1, p. 97 | DOI:10.3934/krm.2012.5.97
- Improved Poincaré inequalities, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 75 (2012) no. 16, pp. 5985-6001 | DOI:10.1016/j.na.2012.05.008 | Zbl:1250.26018
- Optimal time decay of the Vlasov-Poisson-Boltzmann system in
, Archive for Rational Mechanics and Analysis, Volume 199 (2011) no. 1, pp. 291-328 | DOI:10.1007/s00205-010-0318-6 | Zbl:1232.35169 - Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space, Communications on Pure and Applied Mathematics, Volume 64 (2011) no. 11, pp. 1497-1546 | DOI:10.1002/cpa.20381 | Zbl:1244.35010
- Hypocoercivity of linear degenerately dissipative kinetic equations, Nonlinearity, Volume 24 (2011) no. 8, p. 2165 | DOI:10.1088/0951-7715/24/8/003
- A kinetic flocking model with diffusion, Communications in Mathematical Physics, Volume 300 (2010) no. 1, pp. 95-145 | DOI:10.1007/s00220-010-1110-z | Zbl:1213.35395
- Hypocoercivity for kinetic equations with linear relaxation terms, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 347 (2009) no. 9-10, pp. 511-516 | DOI:10.1016/j.crma.2009.02.025 | Zbl:1177.35054
Cité par 82 documents. Sources : Crossref, zbMATH
Commentaires - Politique