[Une note sur l’hypocoercivité pour les équations cinétiques avec équilibres à queue lourde]
Dans cet article, on s’intéresse au comportement en temps long d’équations cinétiques linéaires dont les équilibres locaux sont à queue lourde. Notre contribution principale concerne l’équation de Lévy–Fokker–Planck cinétique, pour laquelle nous adaptons des techniques d’hypocoercivité afin de démontrer la convergence exponentielle des solutions vers un équilibre global. En comparant au cas de l’équation de Fokker–Planck cinétique classique, les enjeux ici sont liés au manque de symétrie de l’opérateur non-local de Lévy–Fokker–Planck et à la compréhension de ses propriétés de régularisation. En complément de notre analyse, nous traitons également le cas de l’équation de BGK à queue lourde.
In this paper we are interested in the large time behavior of linear kinetic equations with heavy-tailed local equilibria. Our main contribution concerns the kinetic Lévy–Fokker–Planck equation, for which we adapt hypocoercivity techniques in order to show that solutions converge exponentially fast to the global equilibrium. Compared to the classical kinetic Fokker–Planck equation, the issues here concern the lack of symmetry of the non-local Lévy–Fokker–Planck operator and the understanding of its regularization properties. As a complementary related result, we also treat the case of the heavy-tailed BGK equation.
Révisé le :
Accepté le :
Publié le :
Nathalie Ayi 1 ; Maxime Herda 2 ; Hélène Hivert 3 ; Isabelle Tristani 4
@article{CRMATH_2020__358_3_333_0, author = {Nathalie Ayi and Maxime Herda and H\'el\`ene Hivert and Isabelle Tristani}, title = {A note on hypocoercivity for kinetic equations with heavy-tailed equilibrium}, journal = {Comptes Rendus. Math\'ematique}, pages = {333--340}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {3}, year = {2020}, doi = {10.5802/crmath.46}, language = {en}, }
TY - JOUR AU - Nathalie Ayi AU - Maxime Herda AU - Hélène Hivert AU - Isabelle Tristani TI - A note on hypocoercivity for kinetic equations with heavy-tailed equilibrium JO - Comptes Rendus. Mathématique PY - 2020 SP - 333 EP - 340 VL - 358 IS - 3 PB - Académie des sciences, Paris DO - 10.5802/crmath.46 LA - en ID - CRMATH_2020__358_3_333_0 ER -
%0 Journal Article %A Nathalie Ayi %A Maxime Herda %A Hélène Hivert %A Isabelle Tristani %T A note on hypocoercivity for kinetic equations with heavy-tailed equilibrium %J Comptes Rendus. Mathématique %D 2020 %P 333-340 %V 358 %N 3 %I Académie des sciences, Paris %R 10.5802/crmath.46 %G en %F CRMATH_2020__358_3_333_0
Nathalie Ayi; Maxime Herda; Hélène Hivert; Isabelle Tristani. A note on hypocoercivity for kinetic equations with heavy-tailed equilibrium. Comptes Rendus. Mathématique, Volume 358 (2020) no. 3, pp. 333-340. doi : 10.5802/crmath.46. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.46/
[1] Fractional Diffusion Limit for a Fractional Vlasov–Fokker–Planck Equation, SIAM J. Math. Anal., Volume 51 (2019) no. 1, pp. 469-488 | DOI | MR | Zbl
[2] On discretization of fractionnal Fokker–Planck equations (In preparation)
[3] Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations, Math. Comput., Volume 89 (2020) no. 323, pp. 1093-1133 | DOI | MR | Zbl
[4] Harnack inequality for stable processes on d-sets, Stud. Math., Volume 158 (2003) no. 2, pp. 163-198 | DOI | MR | Zbl
[5] Fractional Hypocoercivity (2019) (https://arxiv.org/abs/1911.11020)
[6] Entropies, convexity, and functional inequalities: on -entropies and -Sobolev inequalities, J. Math. Kyoto Univ., Volume 44 (2004) no. 2, pp. 325-363 | DOI | MR | Zbl
[7] Numerical schemes for kinetic equations in the anomalous diffusion limit. Part I: The case of heavy-tailed equilibrium, SIAM J. Sci. Comput., Volume 38 (2016) no. 2, p. A737-A764 | DOI | MR | Zbl
[8] Coercivity, hypocoercivity, exponential time decay and simulations for discrete Fokker–Planck equations, Numer. Math., Volume 144 (2020) no. 3, pp. 615-697 | DOI | MR | Zbl
[9] The Lévy–Fokker–Planck equation: -entropies and convergence to equilibrium, Asymptotic Anal., Volume 59 (2008) no. 3-4, pp. 125-138 | DOI | Zbl
[10] Introduction to hypocoercive methods and applications for simple linear inhomogeneous kinetic models, Lectures on the analysis of nonlinear partial differential equations. Part 5 (Morningside Lectures in Mathematics), Volume 5, International Press, 2018, pp. 119-147 | MR | Zbl
[11] Short time diffusion properties of inhomogeneous kinetic equations with fractional collision kernel (2018) (https://arxiv.org/abs/1709.09943)
[12] Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., Volume 20 (2017) no. 1, pp. 7-51 | MR | Zbl
[13] Fractional Fokker–Planck equation, Commun. Math. Sci., Volume 13 (2015) no. 5, pp. 1243-1260 | DOI | MR | Zbl
[14] Hypocoercivity, Memoirs of the American Mathematical Society, 950, American Mathematical Society, 2009, iv+141 pages | Zbl
[15] A simple approach to functional inequalities for non-local Dirichlet forms, ESAIM, Probab. Stat., Volume 18 (2014), pp. 503-513 | DOI | Numdam | MR | Zbl
Cité par Sources :
Commentaires - Politique