In this Note, we consider the 1-dimensional wave equation, discretized by means of Glimm's random choice method. We prove that for almost every choice of the random parameter, the observability estimate is true asymptotically, uniformly with respect to the discretization parameters.
Dans cette Note, nous considérons l'équation des ondes unidimensionnelle discrétisée selon la méthode du choix aléatoire due à J. Glimm. Nous établissons que pour presque tout choix de la variable aléatoire, l'estimée d'observabilité pour cette équation est vraie asymptotiquement, uniformément en les paramètres de discrétisation.
Accepted:
Published online:
Jean-Michel Coron 1, 2, 3; Sylvain Ervedoza 4; Olivier Glass 1, 2
@article{CRMATH_2009__347_9-10_505_0, author = {Jean-Michel Coron and Sylvain Ervedoza and Olivier Glass}, title = {Uniform observability estimates for the {1-D} discretized wave equation and the random choice method}, journal = {Comptes Rendus. Math\'ematique}, pages = {505--510}, publisher = {Elsevier}, volume = {347}, number = {9-10}, year = {2009}, doi = {10.1016/j.crma.2009.03.012}, language = {en}, }
TY - JOUR AU - Jean-Michel Coron AU - Sylvain Ervedoza AU - Olivier Glass TI - Uniform observability estimates for the 1-D discretized wave equation and the random choice method JO - Comptes Rendus. Mathématique PY - 2009 SP - 505 EP - 510 VL - 347 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2009.03.012 LA - en ID - CRMATH_2009__347_9-10_505_0 ER -
%0 Journal Article %A Jean-Michel Coron %A Sylvain Ervedoza %A Olivier Glass %T Uniform observability estimates for the 1-D discretized wave equation and the random choice method %J Comptes Rendus. Mathématique %D 2009 %P 505-510 %V 347 %N 9-10 %I Elsevier %R 10.1016/j.crma.2009.03.012 %G en %F CRMATH_2009__347_9-10_505_0
Jean-Michel Coron; Sylvain Ervedoza; Olivier Glass. Uniform observability estimates for the 1-D discretized wave equation and the random choice method. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 505-510. doi : 10.1016/j.crma.2009.03.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.03.012/
[1] Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math., Volume 18 (1965), pp. 697-715
[2] Exact and approximate controllability for distributed parameter systems. A numerical approach, Encyclopedia of Mathematics and its Applications, vol. 117, Cambridge University Press, Cambridge, 2008
[3] Probability and Random Processes, Oxford University Press, New York, 1992
[4] J.-L. Lions, Contrôlabilité exacte, stabilisation et perturbations de systèmes distribués, Tomes 1 & 2, Masson, RMA 8 & 9, Paris 1988
[5] Propagation, observation, and control of waves approximated by finite difference methods, SIAM Rev., Volume 47 (2005) no. 2, pp. 197-243
Cited by Sources:
Comments - Policy