Comptes Rendus
Topology
Codimension one minimal foliations and the higher homotopy groups of leaves
Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 655-658.

Let F be a codimension one foliation of an aspherical manifold M. Assume that F has no vanishing cycles. If there is an aspherical dense leaf of F, then each leaf of F is aspherical. If F is minimal and the universal covering of a leaf of F is not k-connected, then the universal coverings of no leaves are k-connected.

Soit F une feuilletage de codimension un sur une variété M asphérique. Supposons que F n'a pas de cycles évanouissants. S'il y a une feuille asphérique et dense, alors toute feuille de F est asphérique. Si F˜ est minimal et le revêtement universel d'une feuille n'est pas k-connexe, alors le revêtement universel d'aucune feuille est k-connexe.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.03.017

Tomoo Yokoyama 1

1 Graduate School of Mathematical Sciences, University of Tokyo, Komaba Meguro, Tokyo 153-8914, Japan
@article{CRMATH_2009__347_11-12_655_0,
     author = {Tomoo Yokoyama},
     title = {Codimension one minimal foliations and the higher homotopy groups of leaves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {655--658},
     publisher = {Elsevier},
     volume = {347},
     number = {11-12},
     year = {2009},
     doi = {10.1016/j.crma.2009.03.017},
     language = {en},
}
TY  - JOUR
AU  - Tomoo Yokoyama
TI  - Codimension one minimal foliations and the higher homotopy groups of leaves
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 655
EP  - 658
VL  - 347
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2009.03.017
LA  - en
ID  - CRMATH_2009__347_11-12_655_0
ER  - 
%0 Journal Article
%A Tomoo Yokoyama
%T Codimension one minimal foliations and the higher homotopy groups of leaves
%J Comptes Rendus. Mathématique
%D 2009
%P 655-658
%V 347
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2009.03.017
%G en
%F CRMATH_2009__347_11-12_655_0
Tomoo Yokoyama. Codimension one minimal foliations and the higher homotopy groups of leaves. Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 655-658. doi : 10.1016/j.crma.2009.03.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.03.017/

[1] C. Lamoureux Groupes d'homologie et d'homotopie d'ordre supérieur des variétés compactes ou non compactes feuilletées en codimension 1, C. R. Acad. Sci. Paris, Ser. A–B, Volume 280 (1975) no. 7 (Ai, A411–A414)

Cited by Sources:

Comments - Policy