Comptes Rendus
Differential Geometry
The Witten complex for algebraic curves with cone-like singularities
Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 651-654.

The Witten deformation is an analytical method proposed by Witten which, given a function f:MR on a smooth compact Riemannian manifold M, leads to a proof of the Morse inequalities. In this Note we generalise the Witten deformation to singular complex algebraic curves X with cone-like singularities, and functions on X which we call admissible Morse functions. They are particular examples of stratified Morse functions in the sense of the theory developed by Goresky/MacPherson.

Soit M une variété Riemannienne compacte et soit f:MR une fonction de Morse sur M. La méthode de Witten utilise une déformation du complexe de de Rham pour démontrer les inegalités de Morse. Le but de cette Note est d'étendre cette méthode au cas des courbes algébriques complexes à singularités coniques, munis de fonctions appelées fonctions de Morse admissibles. Ces fonctions sont des fonctions de Morse stratifiées au sens de la théorie de Goresky/MacPherson.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.03.027

Ursula Ludwig 1

1 Mathematisches Institut, Eckerstrasse 1, 79104 Freiburg, Germany
@article{CRMATH_2009__347_11-12_651_0,
     author = {Ursula Ludwig},
     title = {The {Witten} complex for algebraic curves with cone-like singularities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {651--654},
     publisher = {Elsevier},
     volume = {347},
     number = {11-12},
     year = {2009},
     doi = {10.1016/j.crma.2009.03.027},
     language = {en},
}
TY  - JOUR
AU  - Ursula Ludwig
TI  - The Witten complex for algebraic curves with cone-like singularities
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 651
EP  - 654
VL  - 347
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2009.03.027
LA  - en
ID  - CRMATH_2009__347_11-12_651_0
ER  - 
%0 Journal Article
%A Ursula Ludwig
%T The Witten complex for algebraic curves with cone-like singularities
%J Comptes Rendus. Mathématique
%D 2009
%P 651-654
%V 347
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2009.03.027
%G en
%F CRMATH_2009__347_11-12_651_0
Ursula Ludwig. The Witten complex for algebraic curves with cone-like singularities. Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 651-654. doi : 10.1016/j.crma.2009.03.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.03.027/

[1] J.-M. Bismut; G. Lebeau Complex immersions and Quillen metrics, Publ. Math. Inst. Hautes Etud. Sci., Volume 74 (1991), pp. 1-297

[2] J.-M. Bismut; W. Zhang Milnor and Ray–Singer metrics on the equivariant determinant of a flat vector bundle, Geom. Funct. Anal., Volume 4 (1994) no. 2, pp. 136-212

[3] J. Brüning; M. Lesch Hilbert complexes, J. Funct. Anal., Volume 108 (1992) no. 1, pp. 88-132

[4] M. Goresky; R. MacPherson Stratified Morse Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Results in Mathematics and Related Areas (3), vol. 14, Springer-Verlag, Berlin, 1988

[5] M. Lesch Operators of Fuchs Type, Conical Singularities, and Asymptotic Methods, Teubner-Texte zur Mathematik, vol. 136, Stuttgart, 1997

[6] T. Ohsawa On the L2-cohomology of complex spaces, Math. Z., Volume 209 (1992) no. 4, pp. 519-530

[7] E. Witten Supersymmetry and Morse theory, J. Differential Geom., Volume 17 (1982) no. 4, pp. 661-692

[1] B. Helffer; J. Sjöstrand Puits multiples en mécanique semi-classique. IV : Étude du complexe de Witten, Comm. Partial Differential Equations, Volume 10 (1985) no. 3, pp. 245-340

Cited by Sources:

Comments - Policy