[Le complexe de Witten sur des courbes algébriques complexes à singularités coniques]
Soit M une variété Riemannienne compacte et soit
The Witten deformation is an analytical method proposed by Witten which, given a function
Accepté le :
Publié le :
Ursula Ludwig 1
@article{CRMATH_2009__347_11-12_651_0, author = {Ursula Ludwig}, title = {The {Witten} complex for algebraic curves with cone-like singularities}, journal = {Comptes Rendus. Math\'ematique}, pages = {651--654}, publisher = {Elsevier}, volume = {347}, number = {11-12}, year = {2009}, doi = {10.1016/j.crma.2009.03.027}, language = {en}, }
Ursula Ludwig. The Witten complex for algebraic curves with cone-like singularities. Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 651-654. doi : 10.1016/j.crma.2009.03.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.03.027/
[1] Complex immersions and Quillen metrics, Publ. Math. Inst. Hautes Etud. Sci., Volume 74 (1991), pp. 1-297
[2] Milnor and Ray–Singer metrics on the equivariant determinant of a flat vector bundle, Geom. Funct. Anal., Volume 4 (1994) no. 2, pp. 136-212
[3] Hilbert complexes, J. Funct. Anal., Volume 108 (1992) no. 1, pp. 88-132
[4] Stratified Morse Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Results in Mathematics and Related Areas (3), vol. 14, Springer-Verlag, Berlin, 1988
[5] Operators of Fuchs Type, Conical Singularities, and Asymptotic Methods, Teubner-Texte zur Mathematik, vol. 136, Stuttgart, 1997
[6] On the
[7] Supersymmetry and Morse theory, J. Differential Geom., Volume 17 (1982) no. 4, pp. 661-692
[1] Puits multiples en mécanique semi-classique. IV : Étude du complexe de Witten, Comm. Partial Differential Equations, Volume 10 (1985) no. 3, pp. 245-340
Cité par Sources :
Commentaires - Politique