[Quelques conséquences de la conjecture polynomiale de Freiman–Ruzsa]
En supposant la conjecture polynomiale faible de Freiman–Ruzsa, on en déduit certaines conséquences sur les ensembles sommes-produits ainsi que sur la croissance de sous-ensembles de .
Assuming the Weak Polynomial Freiman–Ruzsa Conjecture, we derive some consequences on sum-products and the growth of subsets of .
Accepté le :
Publié le :
Mei-Chu Chang 1
@article{CRMATH_2009__347_11-12_583_0, author = {Mei-Chu Chang}, title = {Some consequences of the {Polynomial} {Freiman{\textendash}Ruzsa} {Conjecture}}, journal = {Comptes Rendus. Math\'ematique}, pages = {583--588}, publisher = {Elsevier}, volume = {347}, number = {11-12}, year = {2009}, doi = {10.1016/j.crma.2009.04.006}, language = {en}, }
Mei-Chu Chang. Some consequences of the Polynomial Freiman–Ruzsa Conjecture. Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 583-588. doi : 10.1016/j.crma.2009.04.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.04.006/
[1] Estimates on exponential sums related to Diffie–Hellman distributions, GAFA, Volume 15 (2005) no. 1, pp. 1-34
[2] On the size of k-fold sum and product sets of integers, JAMS, Volume 17 (2004) no. 2, pp. 473-497
[3] J. Bourgain, M.-C. Chang, Sum-product theorems in algebraic number fields, Journal d'Analyse Mathematique, in press
[4] A polynomial bound in Freiman's Theorem, Duke Math. J., Volume 113 (2002) no. 3, pp. 399-419
[5] Product theorems in SL2 and SL3, J. Math. Jussieu, Volume 7 (2008) no. 1, pp. 1-25
[6] M.-C. Chang, On product sets in and , preprint
[7] Linear equations in variables which lie in a multiplicative group, Ann. Math., Volume 155 (2002), pp. 807-836
[8] H. Helfgott, Growth and generation in , preprint, 2008
[9] Additive Combinatorics, Cambridge University Press, 2006
Cité par Sources :
Commentaires - Politique