Comptes Rendus
Mathematical Analysis/Harmonic Analysis
Reproducing kernels for harmonic Besov spaces on the ball
[Noyaux reproduisants pour les espaces harmoniques de Besov sur la boule]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 735-738.

Les espaces de Besov de fonctions harmoniques sur la boule unité de Rn sont défini en exigeant que suffisamment des dérivés de haut ordre de fonctions appartiennent aux espaces de Bergman harmoniques. Nous calculons les noyaux reproduisants de ces espaces de Besov qui sont des espaces de Hilbert. Les noyaux se révèlent être, de façon tout naturel, des sommes infinies pondérées des harmoniques zonalles et des dérivés fractionnels radiaux du noyau de Poisson.

Besov spaces of harmonic functions on the unit ball of Rn are defined by requiring sufficiently high-order derivatives of functions lie in harmonic Bergman spaces. We compute the reproducing kernels of those Besov spaces that are Hilbert spaces. The kernels turn out to be weighted infinite sums of zonal harmonics and natural radial fractional derivatives of the Poisson kernel.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.04.016

Seçil Gergün 1 ; H. Turgay Kaptanoğlu 2 ; A. Ersin Üreyen 3

1 Department of Mathematics and Computer Science, Çankaya University, Ankara 06530, Turkey
2 Department of Mathematics, Bilkent University, Ankara 06800, Turkey
3 Department of Mathematics, Anadolu University, Eskişehir 26470, Turkey
@article{CRMATH_2009__347_13-14_735_0,
     author = {Se\c{c}il Gerg\"un and H. Turgay Kaptano\u{g}lu and A. Ersin \"Ureyen},
     title = {Reproducing kernels for harmonic {Besov} spaces on the ball},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {735--738},
     publisher = {Elsevier},
     volume = {347},
     number = {13-14},
     year = {2009},
     doi = {10.1016/j.crma.2009.04.016},
     language = {en},
}
TY  - JOUR
AU  - Seçil Gergün
AU  - H. Turgay Kaptanoğlu
AU  - A. Ersin Üreyen
TI  - Reproducing kernels for harmonic Besov spaces on the ball
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 735
EP  - 738
VL  - 347
IS  - 13-14
PB  - Elsevier
DO  - 10.1016/j.crma.2009.04.016
LA  - en
ID  - CRMATH_2009__347_13-14_735_0
ER  - 
%0 Journal Article
%A Seçil Gergün
%A H. Turgay Kaptanoğlu
%A A. Ersin Üreyen
%T Reproducing kernels for harmonic Besov spaces on the ball
%J Comptes Rendus. Mathématique
%D 2009
%P 735-738
%V 347
%N 13-14
%I Elsevier
%R 10.1016/j.crma.2009.04.016
%G en
%F CRMATH_2009__347_13-14_735_0
Seçil Gergün; H. Turgay Kaptanoğlu; A. Ersin Üreyen. Reproducing kernels for harmonic Besov spaces on the ball. Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 735-738. doi : 10.1016/j.crma.2009.04.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.04.016/

[1] S. Axler; P. Bourdon; W. Ramey Harmonic Function Theory, Springer, New York, 1992

[2] R.R. Coifman; R. Rochberg Representation theorems for holomorphic and harmonic functions in Lp, Astérisque, Volume 77 (1980), pp. 12-66

[3] M. Jevtić; M. Pavlović Harmonic Besov spaces on the unit ball of Rn, Rocky Mountain J. Math., Volume 31 (2001), pp. 1305-1316

[4] E. Ligocka The Sobolev spaces of harmonic functions, Studia Math., Volume 84 (1986), pp. 79-87

[5] E. Ligocka Estimates in Sobolev norms ps for harmonic and holomorphic functions and interpolation between Sobolev and Hölder spaces of harmonic functions, Studia Math., Volume 86 (1987), pp. 255-271

[6] E. Ligocka On the reproducing kernel for harmonic functions and the space of Bloch harmonic functions on the unit ball in Rn, Studia Math., Volume 87 (1987), pp. 23-32

[7] E. Ligocka On the space of Bloch harmonic functions and interpolation of spaces of harmonic and holomorphic functions, Studia Math., Volume 87 (1987), pp. 223-238

[8] E. Ligocka Corrigendum to the paper “On the reproducing kernel for harmonic functions and the space of Bloch harmonic functions on the unit ball in Rn, Studia Math., Volume 101 (1992), p. 319

[9] J. Miao Reproducing kernels for harmonic Bergman spaces of the unit ball, Monatsh. Math., Volume 125 (1998), pp. 25-35

[10] G. Ren; U. Kähler Weighted Lipschitz continuity and harmonic Bloch and Besov spaces in the unit real ball, Proc. Edinb. Math. Soc., Volume 48 (2005), pp. 743-755

[11] E.M. Stein; G. Weiss Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ., Princeton, 1971

[12] S. Stević On harmonic function spaces, J. Math. Soc. Japan, Volume 57 (2005), pp. 781-802

[13] Z. Wu Operators on harmonic Bergman spaces, Integral Equations Operator Theory, Volume 24 (1996), pp. 352-371

[14] R. Yoneda A characterization of the harmonic Bloch space and the harmonic Besov spaces by an oscillation, Proc. Edinb. Math. Soc., Volume 45 (2002), pp. 229-239

Cité par Sources :

This research is supported by TÜBİTAK under Research Project Grant 108T329.

Commentaires - Politique