Comptes Rendus
Partial Differential Equations/Probability Theory
Zero-noise solutions of linear transport equations without uniqueness: an example
[Solutions à bruit nul des équations linéaires de transport : un exemple]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 753-756.

On considère un exemple unidimensionnel classique d'équation de transport linéaire sans unicité des solutions faibles. En présence d'une perturbation donnée par un bruit multiplicatif convenablement choisi, l'équation se révèle bien posée. On identifie les deux solutions de l'équation déterministe obtenues dans la limite ou le bruit s'annule. On prouve aussi que la solution de viscosité nulle existe et qu'elle est différente des deux autres.

We consider a classical one-dimensional example of linear transport equation without uniqueness of weak solutions. Under a suitable multiplicative noise perturbation, the equation is well posed. We identify the two solutions of the deterministic equation obtained in the zero-noise limit. In addition, we prove that the zero-viscosity solution exists and is different from them.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.04.027

Stefano Attanasio 1 ; Franco Flandoli 2

1 Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa, Italy
2 Dipartimento di Matematica Applicata “U. Dini”, Università di Pisa, Via Buonarroti 1, 56127 Pisa, Italy
@article{CRMATH_2009__347_13-14_753_0,
     author = {Stefano Attanasio and Franco Flandoli},
     title = {Zero-noise solutions of linear transport equations without uniqueness: an example},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {753--756},
     publisher = {Elsevier},
     volume = {347},
     number = {13-14},
     year = {2009},
     doi = {10.1016/j.crma.2009.04.027},
     language = {en},
}
TY  - JOUR
AU  - Stefano Attanasio
AU  - Franco Flandoli
TI  - Zero-noise solutions of linear transport equations without uniqueness: an example
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 753
EP  - 756
VL  - 347
IS  - 13-14
PB  - Elsevier
DO  - 10.1016/j.crma.2009.04.027
LA  - en
ID  - CRMATH_2009__347_13-14_753_0
ER  - 
%0 Journal Article
%A Stefano Attanasio
%A Franco Flandoli
%T Zero-noise solutions of linear transport equations without uniqueness: an example
%J Comptes Rendus. Mathématique
%D 2009
%P 753-756
%V 347
%N 13-14
%I Elsevier
%R 10.1016/j.crma.2009.04.027
%G en
%F CRMATH_2009__347_13-14_753_0
Stefano Attanasio; Franco Flandoli. Zero-noise solutions of linear transport equations without uniqueness: an example. Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 753-756. doi : 10.1016/j.crma.2009.04.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.04.027/

[1] L. Ambrosio Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004) no. 2, pp. 227-260

[2] R. Bafico; P. Baldi Small random perturbations of Peano phenomena, Stochastics, Volume 6 (1982), pp. 279-292

[3] R.J. DiPerna; P.-L. Lions Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547

[4] E. Weinan; E. Vanden-Eijnden A note on generalized flows, Phys. D, Volume 183 (2003) no. 3–4, pp. 159-174

[5] F. Flandoli; M. Gubinelli; E. Priola Well-posedness of the transport equation by stochastic perturbation | arXiv

[6] F. Flandoli; F. Russo Generalized calculus and SDEs with non-regular drift, Stochastics Stochastics Rep., Volume 72 (2002) no. 1–2, pp. 11-54

[7] M. Gradinaru; S. Herrmann; B. Roynette A singular large deviations phenomenon, Ann. Inst. H. Poincaré Probab. Statist., Volume 37 (2001) no. 5, pp. 555-580

[8] S. Herrmann Phénomène de Peano et grandes déviations [Large deviations for the Peano phenomenon], C. R. Acad. Sci. Paris, Sér. I Math., Volume 332 (2001) no. 11, pp. 1019-1024 (in French)

[9] N.V. Krylov Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Graduate Studies in Mathematics, vol. 12, American Mathematical Society, Providence, RI, 1996

[10] D. Revuz; M. Yor Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1991

  • THEODORE D. DRIVAS; ALEXEI A. MAILYBAEV; ARTEM RAIBEKAS Statistical determinism in non-Lipschitz dynamical systems, Ergodic Theory and Dynamical Systems, Volume 44 (2024) no. 7, p. 1856 | DOI:10.1017/etds.2023.74
  • Branko Marković; Marko Nedeljkov A zero-noise limit to a symmetric system of conservation laws, Stochastic Analysis and Applications, Volume 41 (2023) no. 1, p. 102 | DOI:10.1080/07362994.2021.1990778
  • Franco Flandoli; Eliseo Luongo Transport Noise in the Heat Equation, Stochastic Partial Differential Equations in Fluid Mechanics, Volume 2330 (2023), p. 75 | DOI:10.1007/978-981-99-0385-6_3
  • Franco Flandoli; Lucio Galeati; Dejun Luo Scaling limit of stochastic 2D Euler equations with transport noises to the deterministic Navier–Stokes equations, Journal of Evolution Equations, Volume 21 (2021) no. 1, p. 567 | DOI:10.1007/s00028-020-00592-z
  • Theodore D Drivas; Alexei A Mailybaev ‘Life after death’ in ordinary differential equations with a non-Lipschitz singularity, Nonlinearity, Volume 34 (2021) no. 4, p. 2296 | DOI:10.1088/1361-6544/abbe60
  • A. Kulik; A. Pilipenko On Regularization by a Small Noise of Multidimensional Odes with Non-Lipschitz Coefficients, Ukrainian Mathematical Journal, Volume 72 (2021) no. 9, p. 1445 | DOI:10.1007/s11253-021-01865-7
  • Gennaro Ciampa; Gianluca Crippa; Stefano Spirito Smooth approximation is not a selection principle for the transport equation with rough vector field, Calculus of Variations and Partial Differential Equations, Volume 59 (2020) no. 1 | DOI:10.1007/s00526-019-1659-0
  • Gregory L. Eyink; Dmytro Bandak Renormalization group approach to spontaneous stochasticity, Physical Review Research, Volume 2 (2020) no. 4 | DOI:10.1103/physrevresearch.2.043161
  • François Delarue; Rinel Foguen Tchuendom Selection of equilibria in a linear quadratic mean-field game, Stochastic Processes and their Applications, Volume 130 (2020) no. 2, p. 1000 | DOI:10.1016/j.spa.2019.04.005
  • Lucio Galeati On the convergence of stochastic transport equations to a deterministic parabolic one, Stochastics and Partial Differential Equations: Analysis and Computations, Volume 8 (2020) no. 4, p. 833 | DOI:10.1007/s40072-019-00162-6
  • A. Pilipenko; A. Kulik On regularization by a small noise of multidimensional ODEs with non-Lipschitz coefficients, Ukrains’kyi Matematychnyi Zhurnal, Volume 72 (2020) no. 9, p. 1254 | DOI:10.37863/umzh.v72i9.6292
  • Diego Alonso-Orán; Aythami Bethencourt de León; So Takao The Burgers’ equation with stochastic transport: shock formation, local and global existence of smooth solutions, Nonlinear Differential Equations and Applications NoDEA, Volume 26 (2019) no. 6 | DOI:10.1007/s00030-019-0602-6
  • Benjamin Gess; Mario Maurelli Well-posedness by noise for scalar conservation laws, Communications in Partial Differential Equations, Volume 43 (2018) no. 12, p. 1702 | DOI:10.1080/03605302.2018.1535604
  • Andrey Pilipenko; Frank Norbert Proske On a selection problem for small noise perturbation in the multidimensional case, Stochastics and Dynamics, Volume 18 (2018) no. 06, p. 1850045 | DOI:10.1142/s0219493718500454
  • Romain Duboscq; Anthony Réveillac Stochastic regularization effects of semi-martingales on random functions, Journal de Mathématiques Pures et Appliquées, Volume 106 (2016) no. 6, p. 1141 | DOI:10.1016/j.matpur.2016.04.004
  • François Delarue; Franco Flandoli; Dario Vincenzi Noise Prevents Collapse of Vlasov‐Poisson Point Charges, Communications on Pure and Applied Mathematics, Volume 67 (2014) no. 10, p. 1700 | DOI:10.1002/cpa.21476
  • David J. W. Simpson On resolving singularities of piecewise-smooth discontinuous vector fields via small perturbations, Discrete Continuous Dynamical Systems - A, Volume 34 (2014) no. 9, p. 3803 | DOI:10.3934/dcds.2014.34.3803
  • Benjamin Jourdain; Julien Reygner The small noise limit of order-based diffusion processes, Electronic Journal of Probability, Volume 19 (2014) no. none | DOI:10.1214/ejp.v19-2906
  • Dario Trevisan Zero noise limits using local times, Electronic Communications in Probability, Volume 18 (2013) no. none | DOI:10.1214/ecp.v18-2587
  • Luigi Bianchi Uniqueness for an inviscid stochastic dyadic model on a tree, Electronic Communications in Probability, Volume 18 (2013) no. none | DOI:10.1214/ecp.v18-2382
  • Stefano Attanasio Stochastic flows of diffeomorphisms for one-dimensional SDE with discontinuous drift, Electronic Communications in Probability, Volume 15 (2010) no. none | DOI:10.1214/ecp.v15-1545
  • D. Barbato; F. Flandoli; F. Morandin Uniqueness for a stochastic inviscid dyadic model, Proceedings of the American Mathematical Society, Volume 138 (2010) no. 7, p. 2607 | DOI:10.1090/s0002-9939-10-10318-9

Cité par 22 documents. Sources : Crossref

Commentaires - Politique