[Solutions à bruit nul des équations linéaires de transport : un exemple]
On considère un exemple unidimensionnel classique d'équation de transport linéaire sans unicité des solutions faibles. En présence d'une perturbation donnée par un bruit multiplicatif convenablement choisi, l'équation se révèle bien posée. On identifie les deux solutions de l'équation déterministe obtenues dans la limite ou le bruit s'annule. On prouve aussi que la solution de viscosité nulle existe et qu'elle est différente des deux autres.
We consider a classical one-dimensional example of linear transport equation without uniqueness of weak solutions. Under a suitable multiplicative noise perturbation, the equation is well posed. We identify the two solutions of the deterministic equation obtained in the zero-noise limit. In addition, we prove that the zero-viscosity solution exists and is different from them.
Accepté le :
Publié le :
Stefano Attanasio 1 ; Franco Flandoli 2
@article{CRMATH_2009__347_13-14_753_0, author = {Stefano Attanasio and Franco Flandoli}, title = {Zero-noise solutions of linear transport equations without uniqueness: an example}, journal = {Comptes Rendus. Math\'ematique}, pages = {753--756}, publisher = {Elsevier}, volume = {347}, number = {13-14}, year = {2009}, doi = {10.1016/j.crma.2009.04.027}, language = {en}, }
TY - JOUR AU - Stefano Attanasio AU - Franco Flandoli TI - Zero-noise solutions of linear transport equations without uniqueness: an example JO - Comptes Rendus. Mathématique PY - 2009 SP - 753 EP - 756 VL - 347 IS - 13-14 PB - Elsevier DO - 10.1016/j.crma.2009.04.027 LA - en ID - CRMATH_2009__347_13-14_753_0 ER -
Stefano Attanasio; Franco Flandoli. Zero-noise solutions of linear transport equations without uniqueness: an example. Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 753-756. doi : 10.1016/j.crma.2009.04.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.04.027/
[1] Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004) no. 2, pp. 227-260
[2] Small random perturbations of Peano phenomena, Stochastics, Volume 6 (1982), pp. 279-292
[3] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547
[4] A note on generalized flows, Phys. D, Volume 183 (2003) no. 3–4, pp. 159-174
[5] Well-posedness of the transport equation by stochastic perturbation | arXiv
[6] Generalized calculus and SDEs with non-regular drift, Stochastics Stochastics Rep., Volume 72 (2002) no. 1–2, pp. 11-54
[7] A singular large deviations phenomenon, Ann. Inst. H. Poincaré Probab. Statist., Volume 37 (2001) no. 5, pp. 555-580
[8] Phénomène de Peano et grandes déviations [Large deviations for the Peano phenomenon], C. R. Acad. Sci. Paris, Sér. I Math., Volume 332 (2001) no. 11, pp. 1019-1024 (in French)
[9] Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Graduate Studies in Mathematics, vol. 12, American Mathematical Society, Providence, RI, 1996
[10] Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1991
- Statistical determinism in non-Lipschitz dynamical systems, Ergodic Theory and Dynamical Systems, Volume 44 (2024) no. 7, p. 1856 | DOI:10.1017/etds.2023.74
- A zero-noise limit to a symmetric system of conservation laws, Stochastic Analysis and Applications, Volume 41 (2023) no. 1, p. 102 | DOI:10.1080/07362994.2021.1990778
- Transport Noise in the Heat Equation, Stochastic Partial Differential Equations in Fluid Mechanics, Volume 2330 (2023), p. 75 | DOI:10.1007/978-981-99-0385-6_3
- Scaling limit of stochastic 2D Euler equations with transport noises to the deterministic Navier–Stokes equations, Journal of Evolution Equations, Volume 21 (2021) no. 1, p. 567 | DOI:10.1007/s00028-020-00592-z
- ‘Life after death’ in ordinary differential equations with a non-Lipschitz singularity, Nonlinearity, Volume 34 (2021) no. 4, p. 2296 | DOI:10.1088/1361-6544/abbe60
- On Regularization by a Small Noise of Multidimensional Odes with Non-Lipschitz Coefficients, Ukrainian Mathematical Journal, Volume 72 (2021) no. 9, p. 1445 | DOI:10.1007/s11253-021-01865-7
- Smooth approximation is not a selection principle for the transport equation with rough vector field, Calculus of Variations and Partial Differential Equations, Volume 59 (2020) no. 1 | DOI:10.1007/s00526-019-1659-0
- Renormalization group approach to spontaneous stochasticity, Physical Review Research, Volume 2 (2020) no. 4 | DOI:10.1103/physrevresearch.2.043161
- Selection of equilibria in a linear quadratic mean-field game, Stochastic Processes and their Applications, Volume 130 (2020) no. 2, p. 1000 | DOI:10.1016/j.spa.2019.04.005
- On the convergence of stochastic transport equations to a deterministic parabolic one, Stochastics and Partial Differential Equations: Analysis and Computations, Volume 8 (2020) no. 4, p. 833 | DOI:10.1007/s40072-019-00162-6
- On regularization by a small noise of multidimensional ODEs with non-Lipschitz coefficients, Ukrains’kyi Matematychnyi Zhurnal, Volume 72 (2020) no. 9, p. 1254 | DOI:10.37863/umzh.v72i9.6292
- The Burgers’ equation with stochastic transport: shock formation, local and global existence of smooth solutions, Nonlinear Differential Equations and Applications NoDEA, Volume 26 (2019) no. 6 | DOI:10.1007/s00030-019-0602-6
- Well-posedness by noise for scalar conservation laws, Communications in Partial Differential Equations, Volume 43 (2018) no. 12, p. 1702 | DOI:10.1080/03605302.2018.1535604
- On a selection problem for small noise perturbation in the multidimensional case, Stochastics and Dynamics, Volume 18 (2018) no. 06, p. 1850045 | DOI:10.1142/s0219493718500454
- Stochastic regularization effects of semi-martingales on random functions, Journal de Mathématiques Pures et Appliquées, Volume 106 (2016) no. 6, p. 1141 | DOI:10.1016/j.matpur.2016.04.004
- Noise Prevents Collapse of Vlasov‐Poisson Point Charges, Communications on Pure and Applied Mathematics, Volume 67 (2014) no. 10, p. 1700 | DOI:10.1002/cpa.21476
- On resolving singularities of piecewise-smooth discontinuous vector fields via small perturbations, Discrete Continuous Dynamical Systems - A, Volume 34 (2014) no. 9, p. 3803 | DOI:10.3934/dcds.2014.34.3803
- The small noise limit of order-based diffusion processes, Electronic Journal of Probability, Volume 19 (2014) no. none | DOI:10.1214/ejp.v19-2906
- Zero noise limits using local times, Electronic Communications in Probability, Volume 18 (2013) no. none | DOI:10.1214/ecp.v18-2587
- Uniqueness for an inviscid stochastic dyadic model on a tree, Electronic Communications in Probability, Volume 18 (2013) no. none | DOI:10.1214/ecp.v18-2382
- Stochastic flows of diffeomorphisms for one-dimensional SDE with discontinuous drift, Electronic Communications in Probability, Volume 15 (2010) no. none | DOI:10.1214/ecp.v15-1545
- Uniqueness for a stochastic inviscid dyadic model, Proceedings of the American Mathematical Society, Volume 138 (2010) no. 7, p. 2607 | DOI:10.1090/s0002-9939-10-10318-9
Cité par 22 documents. Sources : Crossref
Commentaires - Politique