[Solutions globales pour les équations des ondes de surface en dimension 3]
Nous montrons l'existence de solutions globales pour les équations des ondes de surface en dimension 3 avec gravité seulement, dans le cas de petites données initiales. La preuve combine des estimations d'énergie, qui donnent le contrôle de normes de type
We show existence of global solutions for the gravity water waves equation in dimension 3, in the case of small data. The proof combines energy estimates, which yield control of
Accepté le :
Publié le :
P. Germain 1 ; Nader Masmoudi 1 ; Jalal Shatah 1
@article{CRMATH_2009__347_15-16_897_0, author = {P. Germain and Nader Masmoudi and Jalal Shatah}, title = {Global solutions for the gravity water waves equation in dimension 3}, journal = {Comptes Rendus. Math\'ematique}, pages = {897--902}, publisher = {Elsevier}, volume = {347}, number = {15-16}, year = {2009}, doi = {10.1016/j.crma.2009.05.005}, language = {en}, }
TY - JOUR AU - P. Germain AU - Nader Masmoudi AU - Jalal Shatah TI - Global solutions for the gravity water waves equation in dimension 3 JO - Comptes Rendus. Mathématique PY - 2009 SP - 897 EP - 902 VL - 347 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2009.05.005 LA - en ID - CRMATH_2009__347_15-16_897_0 ER -
P. Germain; Nader Masmoudi; Jalal Shatah. Global solutions for the gravity water waves equation in dimension 3. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 897-902. doi : 10.1016/j.crma.2009.05.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.05.005/
[1] Well-posedness of 3D vortex sheets with surface tension, Commun. Math. Sci., Volume 5 (2007) no. 2, pp. 391-430
[2] D.M. Ambrose, N. Masmoudi, The zero surface tension limit of three-dimensional water waves, Indiana Math. J., in press
[3] Growth rates for the linearized motion of fluid interfaces away from equilibrium, Comm. Pure Appl. Math., Volume 46 (1993), pp. 1269-1301
[4] On the motion of the free surface of a liquid, Comm. Pure Appl. Math., Volume 53 (2000) no. 12, pp. 1536-1602
[5] Au delà des opérateurs pseudo-différentiels, Astérisque, vol. 57, Société Mathématique de France, Paris, 1978
[6] D. Coutand, S. Shkoller, Well posedness of the free-surface incompressible Euler equations with or without surface tension, Preprint
[7] An existence theory for water waves and the Boussinesq and Korteweg–de Vries scaling limits, Comm. Partial Differential Equations, Volume 10 (1985) no. 8, pp. 787-1003
[8] Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not. IMRN, Volume 3 (2009), pp. 414-432
[9] Well-posedness of the initial value problem for capillary-gravity waves, Funkcial. Ekvac., Volume 44 (2001) no. 2, pp. 219-241
[10] Well-posedness of the water-waves equations, J. Amer. Math. Soc., Volume 18 (2005), pp. 605-654
[11] Paraproducts with flag singularities. I. A case study, Rev. Mat. Iberoamericana, Volume 23 (2007) no. 2, pp. 705-742
[12] The Cauchy–Poisson problem, Dinamika Sploshn. Sredy Vyp. 18 Dinamika Zidkost. so Svobod. Granicami, Volume 254 (1974), pp. 104-210 (in Russian)
[13] Geometry and a priori estimates for free boundary problems of the Euler's equation, Comm. Pure Appl. Math., Volume 51 (2008) no. 5, pp. 698-744
[14] The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999
[15] Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math., Volume 130 (1997) no. 1, pp. 39-72
[16] Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc., Volume 12 (1999) no. 2, pp. 445-495
[17] S. Wu, Almost global wellposedness of the 2-D full water wave problem, Invent. Math., in press
[18] Capillary-gravity waves for an incompressible ideal fluid, J. Math. Kyoto Univ., Volume 23 (1983) no. 4, pp. 649-694
[19] P. Zhang, Z. Zhang, On the free boundary problem of 3-D incompressible Euler equations, Preprint
- Growth bound and nonlinear smoothing for the periodic derivative nonlinear Schrödinger equation, Mathematische Annalen, Volume 388 (2024) no. 3, p. 2289 | DOI:10.1007/s00208-022-02492-8
- On the regularity of multilinear Schrödinger integral operators, Analysis and Applications, Volume 21 (2023) no. 02, p. 385 | DOI:10.1142/s0219530522500099
- Five-linear singular integral estimates of Brascamp–Lieb-type, Analysis PDE, Volume 15 (2022) no. 4, p. 1011 | DOI:10.2140/apde.2022.15.1011
- Global boundedness of a class of multilinear Fourier integral operators, Forum of Mathematics, Sigma, Volume 9 (2021) | DOI:10.1017/fms.2021.13
- Polynomial bound and nonlinear smoothing for the Benjamin-Ono equation on the circle, Journal of Differential Equations, Volume 297 (2021), p. 25 | DOI:10.1016/j.jde.2021.06.018
- Water Waves with or Without Surface Tension, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 1329 | DOI:10.1007/978-3-319-13344-7_30
- On the Mathematical Description of Time-Dependent Surface Water Waves, Jahresbericht der Deutschen Mathematiker-Vereinigung, Volume 120 (2018) no. 2, p. 117 | DOI:10.1365/s13291-017-0173-6
- Uniform regularity for free-boundary Navier–Stokes equations with surface tension, Journal of Hyperbolic Differential Equations, Volume 15 (2018) no. 01, p. 37 | DOI:10.1142/s0219891618500030
- Uniform regularity for the free surface compressible Navier–Stokes equations with or without surface tension, Mathematical Models and Methods in Applied Sciences, Volume 28 (2018) no. 02, p. 259 | DOI:10.1142/s0218202518500082
- Small data global solutions for the Camassa–Choi equations, Nonlinearity, Volume 31 (2018) no. 5, p. 1868 | DOI:10.1088/1361-6544/aaa7b6
- Uniform Regularity and Vanishing Viscosity Limit for the Free Surface Navier–Stokes Equations, Archive for Rational Mechanics and Analysis, Volume 223 (2017) no. 1, p. 301 | DOI:10.1007/s00205-016-1036-5
- Global Solutions to Repulsive Hookean Elastodynamics, Archive for Rational Mechanics and Analysis, Volume 223 (2017) no. 1, p. 543 | DOI:10.1007/s00205-016-1039-2
- Uniform Estimate of Viscous Free-Boundary Magnetohydrodynamics with Zero Vacuum Magnetic Field, SIAM Journal on Mathematical Analysis, Volume 49 (2017) no. 4, p. 2710 | DOI:10.1137/16m1089794
- On the Impossibility of Finite-Time Splash Singularities for Vortex Sheets, Archive for Rational Mechanics and Analysis, Volume 221 (2016) no. 2, p. 987 | DOI:10.1007/s00205-016-0977-z
- Water Waves With or Without Surface Tension, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_30-1
- Vortex Sheet Formulations and Initial Value Problems: Analysis and Computing, Lectures on the Theory of Water Waves (2016), p. 140 | DOI:10.1017/cbo9781316411155.009
- On the Finite-Time Splash and Splat Singularities for the 3-D Free-Surface Euler Equations, Communications in Mathematical Physics, Volume 325 (2014) no. 1, p. 143 | DOI:10.1007/s00220-013-1855-2
- Local well-posedness of the viscous surface wave problem without surface tension, Analysis PDE, Volume 6 (2013) no. 2, p. 287 | DOI:10.2140/apde.2013.6.287
- Decay of viscous surface waves without surface tension in horizontally infinite domains, Analysis PDE, Volume 6 (2013) no. 6, p. 1429 | DOI:10.2140/apde.2013.6.1429
- Finite time singularities for the free boundary incompressible Euler equations, Annals of Mathematics, Volume 178 (2013) no. 3, p. 1061 | DOI:10.4007/annals.2013.178.3.6
- Almost Exponential Decay of Periodic Viscous Surface Waves without Surface Tension, Archive for Rational Mechanics and Analysis, Volume 207 (2013) no. 2, p. 459 | DOI:10.1007/s00205-012-0570-z
- Space‐Time Resonances and the Null Condition for First‐Order Systems of Wave Equations, Communications on Pure and Applied Mathematics, Volume 66 (2013) no. 10, p. 1495 | DOI:10.1002/cpa.21461
- Multifrequency NLS Scaling for a Model Equation of Gravity‐Capillary Waves, Communications on Pure and Applied Mathematics, Volume 66 (2013) no. 8, p. 1202 | DOI:10.1002/cpa.21464
- First and Second Order Approximations for a Nonlinear Wave Equation, Journal of Dynamics and Differential Equations, Volume 25 (2013) no. 2, p. 305 | DOI:10.1007/s10884-013-9286-5
- Validity of the Korteweg–de Vries approximation for the two‐dimensional water wave problem in the arc length formulation, Communications on Pure and Applied Mathematics, Volume 65 (2012) no. 3, p. 381 | DOI:10.1002/cpa.21381
- Global solutions for 2D quadratic Schrödinger equations, Journal de Mathématiques Pures et Appliquées, Volume 97 (2012) no. 5, p. 505 | DOI:10.1016/j.matpur.2011.09.008
- Low regularity Cauchy theory for the water-waves problem: canals and swimming pools, Journées équations aux dérivées partielles (2012), p. 1 | DOI:10.5802/jedp.75
- Splash singularity for water waves, Proceedings of the National Academy of Sciences, Volume 109 (2012) no. 3, p. 733 | DOI:10.1073/pnas.1115948108
- On the regularization mechanism for the periodic Korteweg–de Vries equation, Communications on Pure and Applied Mathematics, Volume 64 (2011) no. 5, p. 591 | DOI:10.1002/cpa.20356
- Global wellposedness of the 3-D full water wave problem, Inventiones mathematicae, Volume 184 (2011) no. 1, p. 125 | DOI:10.1007/s00222-010-0288-1
- Singularities in the complex physical plane for deep water waves, Journal of Fluid Mechanics, Volume 685 (2011), p. 83 | DOI:10.1017/jfm.2011.283
- Turning waves and breakdown for incompressible flows, Proceedings of the National Academy of Sciences, Volume 108 (2011) no. 12, p. 4754 | DOI:10.1073/pnas.1101518108
Cité par 32 documents. Sources : Crossref
Commentaires - Politique