[Le modèle de fluide visco-élastique FENE et les écoulements minces]
L'objet de cette Note est de déterminer, de manière rigoureuse, une expression simplifiée de la loi comportementale d'un fluide visco-élastique de type FENE dans un écoulement en domaine mince. Le principe de la preuve utilise à la fois le comportement en temps long d'un écoulement FENE et l'existence d'une solution stationnaire à ce type de loi. On décrit brièvement quelques applications possibles de cette étude : dans les domaines de la lubrification, des écoulements sanguins, de la microfluidique, des couches limites, ….
This Note has as objective to determine, in a rigorous way, a simplified expression of the constitutive law for a visco-elastic fluid of FENE type in thin domains. The proof uses the FENE model behavior for long times and the existence of a stationary solution for this behavioral law. Some possible applications of this study are then briefly described in the domains of lubrication, blood flow, microfluidic, boundary layers, ….
Accepté le :
Publié le :
Laurent Chupin 1
@article{CRMATH_2009__347_17-18_1041_0, author = {Laurent Chupin}, title = {The {FENE} viscoelastic model and thin film flows}, journal = {Comptes Rendus. Math\'ematique}, pages = {1041--1046}, publisher = {Elsevier}, volume = {347}, number = {17-18}, year = {2009}, doi = {10.1016/j.crma.2009.06.014}, language = {en}, }
Laurent Chupin. The FENE viscoelastic model and thin film flows. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1041-1046. doi : 10.1016/j.crma.2009.06.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.06.014/
[1] Existence of global weak solutions for some polymeric flow models, Math. Models Methods Appl. Sci., Volume 15 (2005) no. 6, pp. 939-983
[2] The transition between the Stokes equations and the Reynolds equation: A mathematical proof, Appl. Math. Optim., Volume 14 (1986), pp. 73-93
[3] Dynamics of Polymeric Fluids, vol. 2, Kinetic Theory, John Wiley and Sons, New York, 1977
[4] L. Chupin, Some results about the FENE viscoelastic model, Methods and Applications of Analysis (2009), in press
[5] Non-coercive linear elliptic problems, Potential Anal., Volume 17 (2002) no. 2, pp. 181-203
[6] B. Jourdain, T. Lelièvre, Mathematical analysis of a stochastic differential equation arising in the micro–macro modelling of polymeric fluids, in: Probabilistic Methods in Fluids, Proceedings of the Swansea 2002 Workshop, 2003, pp. 205–223
[7] Long-time asymptotics of a multiscale model for polymeric fluid flows, Arch. Rational Mech. Anal., Volume 181 (2006) no. 1, pp. 97-148
[8] Global existence of weak solutions to micro–macro models, C. R. Math. Acad. Sci. Paris, Volume 345 (2007) no. 1, pp. 15-20
[9] Stochastic Processes in Polymeric Fluids, Springer-Verlag, Berlin, 1996
[10] Boundary-Layer Theory, McGraw–Hill Series in Mechanical Engineering, McGraw–Hill Book Co., Inc./Verlag G. Braun, New York, Toronto, London/Karlsruhe, 1960 (xx+647 pp)
[11] Local existence for the FENE-Dumbbell model of polymeric fluids, Arch. Rational Mech. Anal., Volume 181 (2006), pp. 373-400
Cité par Sources :
Commentaires - Politique