[Entire solutions of Hessian equations in ]
We prove the existence and uniqueness of entire solutions, in appropriate weighted Hölder spaces, of elliptic Hessian equations in with rotational invariance at infinity.
Nous démontrons l'existence et l'unicité de solutions entières, dans des espaces de Hölder à poids appropriés, d'équations hessiennes elliptiques dans invariantes par rotation à l'infini.
Accepted:
Published online:
Mouhamad Hossein 1
@article{CRMATH_2009__347_17-18_1047_0, author = {Mouhamad Hossein}, title = {Solutions enti\`eres d'\'equations hessiennes dans $ {\mathbb{R}}^{n}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {1047--1050}, publisher = {Elsevier}, volume = {347}, number = {17-18}, year = {2009}, doi = {10.1016/j.crma.2009.07.003}, language = {fr}, }
Mouhamad Hossein. Solutions entières d'équations hessiennes dans $ {\mathbb{R}}^{n}$. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1047-1050. doi : 10.1016/j.crma.2009.07.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.07.003/
[1] Ricci-flat Kähler metrics on affine algebraic manifolds, II, Math. Ann., Volume 287 (1990), pp. 175-180
[2] The Dirichlet problem for nonlinear second-order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math., Volume 155 (1986), pp. 261-301
[3] Partial decay on simple manifolds, Ann. Global Anal. Geom., Volume 10 (1992), pp. 3-61
[4] Elliptic Partial Differential Equations of Second Order, Grundlehren der mathematischen Wissenschaften, vol. 224, Springer-Verlag, 1983
[5] M. Hossein, Thèse de Doctorat (mathématiques), Université de Nice – Sophia Antipolis, 12 Mai 2009
Cited by Sources:
Comments - Policy