Comptes Rendus
Algebra/Functional Analysis
A new characterisation of idempotent states on finite and compact quantum groups
[Une nouvelle caractérisation des états idempotents sur des groupes quantiques finis ou compacts]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 991-996.

We show that idempotent states on finite quantum groups correspond to pre-subgroups in the sense of Baaj, Blanchard, and Skandalis. It follows that the lattices formed by the idempotent states on a finite quantum group and by its coidalgebras are isomorphic. We show, furthermore, that these lattices are also isomorphic for compact quantum groups, if one restricts to expected coidalgebras.

Nous donnons une caractérisation des états idempotents sur un groupe quantique fini en termes des pré-sous-groupes introduits par Baaj, Blanchard, et Skandalis, et en déduisons un isomorphisme entre le réseau des états idempotents et le réseau des sous-algèbres coïdéales d'un groupe quantique fini. Cet isomorphisme s'étend aux groupes quantiques compacts, si on le restreind au sous-algèbres coïdéales expectées.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.06.015

Uwe Franz 1 ; Adam Skalski 2

1 Département de mathématiques de Besançon, Université de Franche-Comté, 16, route de Gray, 25030 Besançon, France
2 Department of Mathematics and Statistics, Lancaster University, Lancaster, United Kingdom
@article{CRMATH_2009__347_17-18_991_0,
     author = {Uwe Franz and Adam Skalski},
     title = {A new characterisation of idempotent states on finite and compact quantum groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {991--996},
     publisher = {Elsevier},
     volume = {347},
     number = {17-18},
     year = {2009},
     doi = {10.1016/j.crma.2009.06.015},
     language = {en},
}
TY  - JOUR
AU  - Uwe Franz
AU  - Adam Skalski
TI  - A new characterisation of idempotent states on finite and compact quantum groups
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 991
EP  - 996
VL  - 347
IS  - 17-18
PB  - Elsevier
DO  - 10.1016/j.crma.2009.06.015
LA  - en
ID  - CRMATH_2009__347_17-18_991_0
ER  - 
%0 Journal Article
%A Uwe Franz
%A Adam Skalski
%T A new characterisation of idempotent states on finite and compact quantum groups
%J Comptes Rendus. Mathématique
%D 2009
%P 991-996
%V 347
%N 17-18
%I Elsevier
%R 10.1016/j.crma.2009.06.015
%G en
%F CRMATH_2009__347_17-18_991_0
Uwe Franz; Adam Skalski. A new characterisation of idempotent states on finite and compact quantum groups. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 991-996. doi : 10.1016/j.crma.2009.06.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.06.015/

[1] S. Baaj; E. Blanchard; G. Skandalis Unitaires multiplicatifs en dimension finie et leurs sous-objets, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 4, pp. 1305-1344

[2] S. Baaj; G. Skandalis Unitaires multiplicatifs et dualité pour les produits croisés de C-algèbres, Ann. Sci. École Norm. Sup. (4), Volume 26 (1993) no. 4, pp. 425-488

[3] E. Bedos; G.J. Murphy; L. Tuset Co-amenability of compact quantum groups, J. Geom. Phys., Volume 40 (2001) no. 2, pp. 130-153

[4] U. Franz, A.G. Skalski, Idempotent states on compact quantum groups, , J. Algebra (2009), doi: , in press | arXiv | DOI

[5] U. Franz; A.G. Skalski; R. Tomatsu Classification of idempotent states on the compact quantum groups Uq(2), SUq(2), and SOq(3), 2009 | arXiv

[6] H. Heyer Probability Measures on Locally Compact Groups, Springer-Verlag, Berlin, 1977

[7] G.I. Kac Group extensions which are ring groups, Mat. Sb. (N.S.), Volume 76 (1968) no. 118, pp. 473-496

[8] Y. Kawada; K. Itô On the probability distribution on a compact group, I, Proc. Phys.-Math. Soc. Japan (3), Volume 22 (1940), pp. 977-998

[9] M.B. Landstad; A. van Daele Compact and discrete subgroups of algebraic quantum groups, I, 2007 | arXiv

[10] A. Maes; A. van Daele Notes on compact quantum groups, Nieuw Arch. Wisk. (4), Volume 16 (1998) no. 1–2, pp. 73-112

[11] A. Pal A counterexample on idempotent states on a compact quantum group, Lett. Math. Phys., Volume 37 (1996) no. 1, pp. 75-77

[12] P. Podleś Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups, Comm. Math. Phys., Volume 170 (1995) no. 1, pp. 1-20

[13] A. Van Daele The Haar measure on finite quantum groups, Proc. Amer. Math. Soc., Volume 125 (1997) no. 12, pp. 3489-3500

[14] S.L. Woronowicz Compact matrix pseudogroups, Comm. Math. Phys., Volume 111 (1987), pp. 613-665

[15] S.L. Woronowicz Compact quantum groups (A. Connes; K. Gawedzki; J. Zinn-Justin, eds.), Symétries Quantiques, Les Houches Session LXIV, 1995, Elsevier Science, 1998, pp. 845-884

  • Paweł Kasprzak; Fatemeh Khosravi; Piotr M. Sołtan Kawada-Itô-Kelley theorem for quantum semigroups, Journal of Mathematical Analysis and Applications, Volume 483 (2020) no. 2, p. 123594 | DOI:10.1016/j.jmaa.2019.123594
  • Haonan Zhang Infinitely divisible states on finite quantum groups, Mathematische Zeitschrift, Volume 294 (2020) no. 1-2, p. 571 | DOI:10.1007/s00209-019-02288-8
  • Haonan Zhang Idempotent states on Sekine quantum groups, Communications in Algebra, Volume 47 (2019) no. 10, p. 4095 | DOI:10.1080/00927872.2019.1579335
  • Alexandru Chirvasitu Relative Fourier transforms and expectations on coideal subalgebras, Journal of Algebra, Volume 516 (2018), p. 271 | DOI:10.1016/j.jalgebra.2018.08.033
  • Paweł Kasprzak; Fatemeh Khosravi Coideals, Quantum Subgroups and Idempotent States, The Quarterly Journal of Mathematics (2017) | DOI:10.1093/qmath/haw051
  • Uwe Franz; Hun Hee Lee; Adam Skalski Integration over the quantum diagonal subgroup and associated Fourier-like algebras, International Journal of Mathematics, Volume 27 (2016) no. 09, p. 1650073 | DOI:10.1142/s0129167x16500737
  • Pekka Salmi; Adam Skalski Idempotent States on Locally Compact Quantum Groups II, The Quarterly Journal of Mathematics (2016) | DOI:10.1093/qmath/haw045
  • Paweł Kasprzak; Piotr M. Sołtan Embeddable quantum homogeneous spaces, Journal of Mathematical Analysis and Applications, Volume 411 (2014) no. 2, p. 574 | DOI:10.1016/j.jmaa.2013.07.084
  • MEHRDAD KALANTAR; MATTHIAS NEUFANG; ZHONG-JIN RUAN POISSON BOUNDARIES OVER LOCALLY COMPACT QUANTUM GROUPS, International Journal of Mathematics, Volume 24 (2013) no. 03, p. 1350023 | DOI:10.1142/s0129167x13500237
  • Uwe Franz; Adam Skalski; Reiji Tomatsu On square roots of the Haar state on compact quantum groups, Journal of Pure and Applied Algebra, Volume 216 (2012) no. 10, p. 2079 | DOI:10.1016/j.jpaa.2012.01.020
  • Pekka Salmi Compact quantum subgroups and left invariant C⁎-subalgebras of locally compact quantum groups, Journal of Functional Analysis, Volume 261 (2011) no. 1, p. 1 | DOI:10.1016/j.jfa.2011.03.003

Cité par 11 documents. Sources : Crossref

Commentaires - Politique