[Une nouvelle caractérisation des états idempotents sur des groupes quantiques finis ou compacts]
We show that idempotent states on finite quantum groups correspond to pre-subgroups in the sense of Baaj, Blanchard, and Skandalis. It follows that the lattices formed by the idempotent states on a finite quantum group and by its coidalgebras are isomorphic. We show, furthermore, that these lattices are also isomorphic for compact quantum groups, if one restricts to expected coidalgebras.
Nous donnons une caractérisation des états idempotents sur un groupe quantique fini en termes des pré-sous-groupes introduits par Baaj, Blanchard, et Skandalis, et en déduisons un isomorphisme entre le réseau des états idempotents et le réseau des sous-algèbres coïdéales d'un groupe quantique fini. Cet isomorphisme s'étend aux groupes quantiques compacts, si on le restreind au sous-algèbres coïdéales expectées.
Accepté le :
Publié le :
Uwe Franz 1 ; Adam Skalski 2
@article{CRMATH_2009__347_17-18_991_0, author = {Uwe Franz and Adam Skalski}, title = {A new characterisation of idempotent states on finite and compact quantum groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {991--996}, publisher = {Elsevier}, volume = {347}, number = {17-18}, year = {2009}, doi = {10.1016/j.crma.2009.06.015}, language = {en}, }
TY - JOUR AU - Uwe Franz AU - Adam Skalski TI - A new characterisation of idempotent states on finite and compact quantum groups JO - Comptes Rendus. Mathématique PY - 2009 SP - 991 EP - 996 VL - 347 IS - 17-18 PB - Elsevier DO - 10.1016/j.crma.2009.06.015 LA - en ID - CRMATH_2009__347_17-18_991_0 ER -
Uwe Franz; Adam Skalski. A new characterisation of idempotent states on finite and compact quantum groups. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 991-996. doi : 10.1016/j.crma.2009.06.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.06.015/
[1] Unitaires multiplicatifs en dimension finie et leurs sous-objets, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 4, pp. 1305-1344
[2] Unitaires multiplicatifs et dualité pour les produits croisés de
[3] Co-amenability of compact quantum groups, J. Geom. Phys., Volume 40 (2001) no. 2, pp. 130-153
[4] U. Franz, A.G. Skalski, Idempotent states on compact quantum groups, , J. Algebra (2009), doi: , in press | arXiv | DOI
[5] Classification of idempotent states on the compact quantum groups
[6] Probability Measures on Locally Compact Groups, Springer-Verlag, Berlin, 1977
[7] Group extensions which are ring groups, Mat. Sb. (N.S.), Volume 76 (1968) no. 118, pp. 473-496
[8] On the probability distribution on a compact group, I, Proc. Phys.-Math. Soc. Japan (3), Volume 22 (1940), pp. 977-998
[9] Compact and discrete subgroups of algebraic quantum groups, I, 2007 | arXiv
[10] Notes on compact quantum groups, Nieuw Arch. Wisk. (4), Volume 16 (1998) no. 1–2, pp. 73-112
[11] A counterexample on idempotent states on a compact quantum group, Lett. Math. Phys., Volume 37 (1996) no. 1, pp. 75-77
[12] Symmetries of quantum spaces. Subgroups and quotient spaces of quantum
[13] The Haar measure on finite quantum groups, Proc. Amer. Math. Soc., Volume 125 (1997) no. 12, pp. 3489-3500
[14] Compact matrix pseudogroups, Comm. Math. Phys., Volume 111 (1987), pp. 613-665
[15] Compact quantum groups (A. Connes; K. Gawedzki; J. Zinn-Justin, eds.), Symétries Quantiques, Les Houches Session LXIV, 1995, Elsevier Science, 1998, pp. 845-884
- Kawada-Itô-Kelley theorem for quantum semigroups, Journal of Mathematical Analysis and Applications, Volume 483 (2020) no. 2, p. 123594 | DOI:10.1016/j.jmaa.2019.123594
- Infinitely divisible states on finite quantum groups, Mathematische Zeitschrift, Volume 294 (2020) no. 1-2, p. 571 | DOI:10.1007/s00209-019-02288-8
- Idempotent states on Sekine quantum groups, Communications in Algebra, Volume 47 (2019) no. 10, p. 4095 | DOI:10.1080/00927872.2019.1579335
- Relative Fourier transforms and expectations on coideal subalgebras, Journal of Algebra, Volume 516 (2018), p. 271 | DOI:10.1016/j.jalgebra.2018.08.033
- Coideals, Quantum Subgroups and Idempotent States, The Quarterly Journal of Mathematics (2017) | DOI:10.1093/qmath/haw051
- Integration over the quantum diagonal subgroup and associated Fourier-like algebras, International Journal of Mathematics, Volume 27 (2016) no. 09, p. 1650073 | DOI:10.1142/s0129167x16500737
- Idempotent States on Locally Compact Quantum Groups II, The Quarterly Journal of Mathematics (2016) | DOI:10.1093/qmath/haw045
- Embeddable quantum homogeneous spaces, Journal of Mathematical Analysis and Applications, Volume 411 (2014) no. 2, p. 574 | DOI:10.1016/j.jmaa.2013.07.084
- POISSON BOUNDARIES OVER LOCALLY COMPACT QUANTUM GROUPS, International Journal of Mathematics, Volume 24 (2013) no. 03, p. 1350023 | DOI:10.1142/s0129167x13500237
- On square roots of the Haar state on compact quantum groups, Journal of Pure and Applied Algebra, Volume 216 (2012) no. 10, p. 2079 | DOI:10.1016/j.jpaa.2012.01.020
- Compact quantum subgroups and left invariant C⁎-subalgebras of locally compact quantum groups, Journal of Functional Analysis, Volume 261 (2011) no. 1, p. 1 | DOI:10.1016/j.jfa.2011.03.003
Cité par 11 documents. Sources : Crossref
Commentaires - Politique