We show that idempotent states on finite quantum groups correspond to pre-subgroups in the sense of Baaj, Blanchard, and Skandalis. It follows that the lattices formed by the idempotent states on a finite quantum group and by its coidalgebras are isomorphic. We show, furthermore, that these lattices are also isomorphic for compact quantum groups, if one restricts to expected coidalgebras.
Nous donnons une caractérisation des états idempotents sur un groupe quantique fini en termes des pré-sous-groupes introduits par Baaj, Blanchard, et Skandalis, et en déduisons un isomorphisme entre le réseau des états idempotents et le réseau des sous-algèbres coïdéales d'un groupe quantique fini. Cet isomorphisme s'étend aux groupes quantiques compacts, si on le restreind au sous-algèbres coïdéales expectées.
Accepted:
Published online:
Uwe Franz 1; Adam Skalski 2
@article{CRMATH_2009__347_17-18_991_0, author = {Uwe Franz and Adam Skalski}, title = {A new characterisation of idempotent states on finite and compact quantum groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {991--996}, publisher = {Elsevier}, volume = {347}, number = {17-18}, year = {2009}, doi = {10.1016/j.crma.2009.06.015}, language = {en}, }
TY - JOUR AU - Uwe Franz AU - Adam Skalski TI - A new characterisation of idempotent states on finite and compact quantum groups JO - Comptes Rendus. Mathématique PY - 2009 SP - 991 EP - 996 VL - 347 IS - 17-18 PB - Elsevier DO - 10.1016/j.crma.2009.06.015 LA - en ID - CRMATH_2009__347_17-18_991_0 ER -
Uwe Franz; Adam Skalski. A new characterisation of idempotent states on finite and compact quantum groups. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 991-996. doi : 10.1016/j.crma.2009.06.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.06.015/
[1] Unitaires multiplicatifs en dimension finie et leurs sous-objets, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 4, pp. 1305-1344
[2] Unitaires multiplicatifs et dualité pour les produits croisés de -algèbres, Ann. Sci. École Norm. Sup. (4), Volume 26 (1993) no. 4, pp. 425-488
[3] Co-amenability of compact quantum groups, J. Geom. Phys., Volume 40 (2001) no. 2, pp. 130-153
[4] U. Franz, A.G. Skalski, Idempotent states on compact quantum groups, , J. Algebra (2009), doi: , in press | arXiv | DOI
[5] Classification of idempotent states on the compact quantum groups , , and , 2009 | arXiv
[6] Probability Measures on Locally Compact Groups, Springer-Verlag, Berlin, 1977
[7] Group extensions which are ring groups, Mat. Sb. (N.S.), Volume 76 (1968) no. 118, pp. 473-496
[8] On the probability distribution on a compact group, I, Proc. Phys.-Math. Soc. Japan (3), Volume 22 (1940), pp. 977-998
[9] Compact and discrete subgroups of algebraic quantum groups, I, 2007 | arXiv
[10] Notes on compact quantum groups, Nieuw Arch. Wisk. (4), Volume 16 (1998) no. 1–2, pp. 73-112
[11] A counterexample on idempotent states on a compact quantum group, Lett. Math. Phys., Volume 37 (1996) no. 1, pp. 75-77
[12] Symmetries of quantum spaces. Subgroups and quotient spaces of quantum and groups, Comm. Math. Phys., Volume 170 (1995) no. 1, pp. 1-20
[13] The Haar measure on finite quantum groups, Proc. Amer. Math. Soc., Volume 125 (1997) no. 12, pp. 3489-3500
[14] Compact matrix pseudogroups, Comm. Math. Phys., Volume 111 (1987), pp. 613-665
[15] Compact quantum groups (A. Connes; K. Gawedzki; J. Zinn-Justin, eds.), Symétries Quantiques, Les Houches Session LXIV, 1995, Elsevier Science, 1998, pp. 845-884
Cited by Sources:
Comments - Policy