Comptes Rendus
Number Theory/Algebraic Geometry
Canonical subgroups over Hilbert modular varieties
Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 985-990.

We obtain new results on the geometry of Hilbert modular varieties in positive characteristic and morphisms between them. Using these results and methods of rigid geometry, we develop a theory of canonical subgroups for abelian varieties with real multiplication.

Nous obtenons des résultats nouveaux sur la géométrie des variétés modulaires de Hilbert en caractéristique positive et sur les morphismes entre celles-ci. Grâce à ces résultats et des méthodes de géométrie rigide, nous développons une théorie des sous-groupes canoniques pour les variétés abéliennes à multiplication réelle.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.07.008

Eyal Z. Goren 1; Payman L. Kassaei 2

1 Department of Mathematics, McGill University, 805 Sherbrooke St. West, Montreal, Quebec, Canada H3A 2K6
2 Department of Mathematics, King's College London, Strand, London WC2R 2LS, United Kingdom
@article{CRMATH_2009__347_17-18_985_0,
     author = {Eyal Z. Goren and Payman L. Kassaei},
     title = {Canonical subgroups over {Hilbert} modular varieties},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {985--990},
     publisher = {Elsevier},
     volume = {347},
     number = {17-18},
     year = {2009},
     doi = {10.1016/j.crma.2009.07.008},
     language = {en},
}
TY  - JOUR
AU  - Eyal Z. Goren
AU  - Payman L. Kassaei
TI  - Canonical subgroups over Hilbert modular varieties
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 985
EP  - 990
VL  - 347
IS  - 17-18
PB  - Elsevier
DO  - 10.1016/j.crma.2009.07.008
LA  - en
ID  - CRMATH_2009__347_17-18_985_0
ER  - 
%0 Journal Article
%A Eyal Z. Goren
%A Payman L. Kassaei
%T Canonical subgroups over Hilbert modular varieties
%J Comptes Rendus. Mathématique
%D 2009
%P 985-990
%V 347
%N 17-18
%I Elsevier
%R 10.1016/j.crma.2009.07.008
%G en
%F CRMATH_2009__347_17-18_985_0
Eyal Z. Goren; Payman L. Kassaei. Canonical subgroups over Hilbert modular varieties. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 985-990. doi : 10.1016/j.crma.2009.07.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.07.008/

[1] A. Abbes; A. Mokrane Sous-groupes canoniques et cycles évanescents p-adiques pour les variétés abéliennes, Publ. Math. Inst. Hautes Études Sci., Volume 99 (2004), pp. 117-162

[2] F. Andreatta; C. Gasbarri The canonical subgroup for families of abelian varieties, Compos. Math., Volume 143 (2007) no. 3, pp. 566-602

[3] K. Buzzard; R. Taylor Companion forms and weight one forms, Ann. of Math. (2), Volume 149 (1999) no. 3, pp. 905-919

[4] B. Conrad, Higher-level canonical subgroups in abelian varieties, preprint

[5] P. Deligne; G. Pappas Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant, Compositio Math., Volume 90 (1994) no. 1, pp. 59-79

[6] L. Fargues Application de Hodge–Tate duale d'un groupe de Lubin–Tate, immeuble de Bruhat–Tits du groupe linéaire et filtrations de ramification, Duke Math. J., Volume 140 (2007) no. 3, pp. 499-590

[7] E.Z. Goren Hasse invariants for Hilbert modular varieties, Israel J. Math., Volume 122 (2001), pp. 157-174

[8] E.Z. Goren; P.L. Kassaei The canonical subgroup: A “subgroup-free” approach, Comment. Math. Helv., Volume 81 (2006) no. 3, pp. 617-641

[9] E.Z. Goren; F. Oort Stratifications of Hilbert modular varieties, J. Algebraic Geom., Volume 9 (2000) no. 1, pp. 111-154

[10] P.L. Kassaei A gluing lemma and overconvergent modular forms, Duke Math. J., Volume 132 (2006) no. 3, pp. 509-529

[11] P.L. Kassaei Overconvergence, analytic continuation, and classicality: The case of curves, J. Reine Angew. Math., Volume 631 (2009), pp. 109-139

[12] N.M. Katz, p-Adic properties of modular schemes and modular forms, in: Modular Functions of One Variable III, in: Lecture Notes in Mathematics, vol. 350, 1973, pp. 69–190

[13] M. Kisin; K.F. Lai Overconvergent Hilbert modular forms, Amer. J. Math., Volume 127 (2005) no. 4, pp. 735-783

[14] H. Stamm On the reduction of the Hilbert–Blumenthal-moduli scheme with Γ0(p)-level structure, Forum Math., Volume 9 (1997) no. 4, pp. 405-455

[15] Y. Tian, Canonical subgroups of Barsotti–Tate groups, Ann. of Math., in press

Cited by Sources:

Comments - Policy