[Les varietes de Oka]
Nous donnons une réponse positive à la question suivante posée par Gromov [Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989) 851–897, 3.4.(D), p. 881] : Si une variété analytique complexe Y est telle que toute application holomorphe d'un voisinage d'un sous-ensemble compact convexe de l'espace euclidien
We give a positive answer to Gromov's question [Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989) 851–897, 3.4.(D), p. 881]: If every holomorphic map from a compact convex set in a Euclidean space
Accepté le :
Publié le :
Franc Forstnerič 1
@article{CRMATH_2009__347_17-18_1017_0, author = {Franc Forstneri\v{c}}, title = {Oka manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {1017--1020}, publisher = {Elsevier}, volume = {347}, number = {17-18}, year = {2009}, doi = {10.1016/j.crma.2009.07.005}, language = {en}, }
Franc Forstnerič. Oka manifolds. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1017-1020. doi : 10.1016/j.crma.2009.07.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.07.005/
[1] Extending holomorphic mappings from subvarieties in Stein manifolds, Ann. Inst. Fourier, Volume 55 (2005), pp. 733-751
[2] Runge approximation on convex sets implies Oka's property, Ann. of Math. (2), Volume 163 (2006), pp. 689-707
[3] The Oka principle for sections of stratified fiber bundles, Pure Appl. Math. Quarterly (2009) | arXiv
[4] F. Forstnerič, Invariance of the parametric Oka property, in: Proceedings of the Conference in Honor of Linda P. Rothschild, Fribourg, Switzerland, July 2008, Birkhäuser Verlag, in press, | arXiv
[5] F. Forstnerič, E.F. Wold, Fibrations and Stein neighborhoods, preprint, 2009, | arXiv
[6] Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann., Volume 135 (1958), pp. 263-273
[7] Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc., Volume 2 (1989), pp. 851-897
[8] Model structures and the Oka principle, J. Pure Appl. Algebra, Volume 192 (2004), pp. 203-223
[9] Mapping cylinders and the Oka principle, Indiana Univ. Math. J., Volume 54 (2005), pp. 1145-1159
- Universal holomorphic maps with slow growth I: an algorithm, Mathematische Annalen, Volume 389 (2024) no. 4, p. 3349 | DOI:10.1007/s00208-023-02719-2
- Algebraic Gromov Ellipticity: A Brief Survey, Taiwanese Journal of Mathematics, Volume -1 (2024) no. -1 | DOI:10.11650/tjm/241001
- Recent developments on Oka manifolds, Indagationes Mathematicae, Volume 34 (2023) no. 2, p. 367 | DOI:10.1016/j.indag.2023.01.005
- On the Gauduchon curvature of Hermitian manifolds, International Journal of Mathematics, Volume 34 (2023) no. 07 | DOI:10.1142/s0129167x23500398
- Equivariant Oka theory: survey of recent progress, Complex Analysis and its Synergies, Volume 8 (2022) no. 3 | DOI:10.1007/s40627-022-00103-5
- Elliptic characterization and unification of Oka maps, Mathematische Zeitschrift, Volume 298 (2021) no. 3-4, p. 1735 | DOI:10.1007/s00209-020-02661-y
- Holomorphic Approximation: The Legacy of Weierstrass, Runge, Oka–Weil, and Mergelyan, Advancements in Complex Analysis (2020), p. 133 | DOI:10.1007/978-3-030-40120-7_5
- Oka Manifolds, Stein Manifolds and Holomorphic Mappings, Volume 56 (2017), p. 207 | DOI:10.1007/978-3-319-61058-0_5
- The Hartogs extension theorem for holomorphic vector bundles and sprays, Arkiv för Matematik, Volume 54 (2016) no. 2, p. 299 | DOI:10.1007/s11512-015-0226-y
- Extending holomorphic maps from Stein manifolds into affine toric varieties, Proceedings of the American Mathematical Society, Volume 144 (2016) no. 11, p. 4613 | DOI:10.1090/proc/13108
- Holomorphic Flexibility Properties of the Space of Cubic Rational Maps, The Journal of Geometric Analysis, Volume 25 (2015) no. 3, p. 1620 | DOI:10.1007/s12220-014-9487-0
- Oka manifolds: From Oka to Stein and back, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 22 (2014) no. 4, p. 747 | DOI:10.5802/afst.1388
- Flexibility Properties in Complex Analysis and Affine Algebraic Geometry, Automorphisms in Birational and Affine Geometry, Volume 79 (2014), p. 387 | DOI:10.1007/978-3-319-05681-4_22
- Holomorphic Flexibility Properties of Compact Complex Surfaces, International Mathematics Research Notices, Volume 2014 (2014) no. 13, p. 3714 | DOI:10.1093/imrn/rnt044
- Null curves and directed immersions of open Riemann surfaces, Inventiones mathematicae, Volume 196 (2014) no. 3, p. 733 | DOI:10.1007/s00222-013-0478-8
- Deformations of Oka manifolds, Mathematische Zeitschrift, Volume 272 (2012) no. 3-4, p. 1051 | DOI:10.1007/s00209-011-0973-9
- Acyclic embeddings of open Riemann surfaces into new examples of elliptic manifolds, Proceedings of the American Mathematical Society, Volume 141 (2012) no. 2, p. 597 | DOI:10.1090/s0002-9939-2012-11430-3
Cité par 17 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier