Comptes Rendus
Complex Analysis
Oka manifolds
[Les varietes de Oka]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1017-1020.

Nous donnons une réponse positive à la question suivante posée par Gromov [Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989) 851–897, 3.4.(D), p. 881] : Si une variété analytique complexe Y est telle que toute application holomorphe d'un voisinage d'un sous-ensemble compact convexe de l'espace euclidien Cn dans Y peut être approximée par des applications entière de Cn dans Y, alors les applications holomorphes d'un espace de Stein réduit X dans Y possèdent la propriété d'Oka paramétrique.

We give a positive answer to Gromov's question [Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989) 851–897, 3.4.(D), p. 881]: If every holomorphic map from a compact convex set in a Euclidean space Cn to a certain complex manifold Y is a uniform limit of entire maps CnY, then Y enjoys the parametric Oka property. In particular, for any reduced Stein space X the inclusion O(X,Y)C(X,Y) of the space of holomorphic maps into the space of continuous maps is a weak homotopy equivalence.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.07.005

Franc Forstnerič 1

1 Faculty of Mathematics and Physics, University of Ljubljana, and Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia
@article{CRMATH_2009__347_17-18_1017_0,
     author = {Franc Forstneri\v{c}},
     title = {Oka manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1017--1020},
     publisher = {Elsevier},
     volume = {347},
     number = {17-18},
     year = {2009},
     doi = {10.1016/j.crma.2009.07.005},
     language = {en},
}
TY  - JOUR
AU  - Franc Forstnerič
TI  - Oka manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1017
EP  - 1020
VL  - 347
IS  - 17-18
PB  - Elsevier
DO  - 10.1016/j.crma.2009.07.005
LA  - en
ID  - CRMATH_2009__347_17-18_1017_0
ER  - 
%0 Journal Article
%A Franc Forstnerič
%T Oka manifolds
%J Comptes Rendus. Mathématique
%D 2009
%P 1017-1020
%V 347
%N 17-18
%I Elsevier
%R 10.1016/j.crma.2009.07.005
%G en
%F CRMATH_2009__347_17-18_1017_0
Franc Forstnerič. Oka manifolds. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1017-1020. doi : 10.1016/j.crma.2009.07.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.07.005/

[1] F. Forstnerič Extending holomorphic mappings from subvarieties in Stein manifolds, Ann. Inst. Fourier, Volume 55 (2005), pp. 733-751

[2] F. Forstnerič Runge approximation on convex sets implies Oka's property, Ann. of Math. (2), Volume 163 (2006), pp. 689-707

[3] F. Forstnerič The Oka principle for sections of stratified fiber bundles, Pure Appl. Math. Quarterly (2009) | arXiv

[4] F. Forstnerič, Invariance of the parametric Oka property, in: Proceedings of the Conference in Honor of Linda P. Rothschild, Fribourg, Switzerland, July 2008, Birkhäuser Verlag, in press, | arXiv

[5] F. Forstnerič, E.F. Wold, Fibrations and Stein neighborhoods, preprint, 2009, | arXiv

[6] H. Grauert Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann., Volume 135 (1958), pp. 263-273

[7] M. Gromov Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc., Volume 2 (1989), pp. 851-897

[8] F. Lárusson Model structures and the Oka principle, J. Pure Appl. Algebra, Volume 192 (2004), pp. 203-223

[9] F. Lárusson Mapping cylinders and the Oka principle, Indiana Univ. Math. J., Volume 54 (2005), pp. 1145-1159

  • Bin Guo; Song-Yan Xie Universal holomorphic maps with slow growth I: an algorithm, Mathematische Annalen, Volume 389 (2024) no. 4, p. 3349 | DOI:10.1007/s00208-023-02719-2
  • Mikhail Zaidenberg Algebraic Gromov Ellipticity: A Brief Survey, Taiwanese Journal of Mathematics, Volume -1 (2024) no. -1 | DOI:10.11650/tjm/241001
  • Franc Forstnerič Recent developments on Oka manifolds, Indagationes Mathematicae, Volume 34 (2023) no. 2, p. 367 | DOI:10.1016/j.indag.2023.01.005
  • Kyle Broder; James Stanfield On the Gauduchon curvature of Hermitian manifolds, International Journal of Mathematics, Volume 34 (2023) no. 07 | DOI:10.1142/s0129167x23500398
  • Frank Kutzschebauch; Finnur Lárusson; Gerald W. Schwarz Equivariant Oka theory: survey of recent progress, Complex Analysis and its Synergies, Volume 8 (2022) no. 3 | DOI:10.1007/s40627-022-00103-5
  • Yuta Kusakabe Elliptic characterization and unification of Oka maps, Mathematische Zeitschrift, Volume 298 (2021) no. 3-4, p. 1735 | DOI:10.1007/s00209-020-02661-y
  • John Erik Fornæss; Franc Forstnerič; Erlend F. Wold Holomorphic Approximation: The Legacy of Weierstrass, Runge, Oka–Weil, and Mergelyan, Advancements in Complex Analysis (2020), p. 133 | DOI:10.1007/978-3-030-40120-7_5
  • Franc Forstnerič Oka Manifolds, Stein Manifolds and Holomorphic Mappings, Volume 56 (2017), p. 207 | DOI:10.1007/978-3-319-61058-0_5
  • Rafael B. Andrist; Nikolay Shcherbina; Erlend F. Wold The Hartogs extension theorem for holomorphic vector bundles and sprays, Arkiv för Matematik, Volume 54 (2016) no. 2, p. 299 | DOI:10.1007/s11512-015-0226-y
  • Richard Lärkäng; Finnur Lárusson Extending holomorphic maps from Stein manifolds into affine toric varieties, Proceedings of the American Mathematical Society, Volume 144 (2016) no. 11, p. 4613 | DOI:10.1090/proc/13108
  • Alexander Hanysz Holomorphic Flexibility Properties of the Space of Cubic Rational Maps, The Journal of Geometric Analysis, Volume 25 (2015) no. 3, p. 1620 | DOI:10.1007/s12220-014-9487-0
  • Franc Forstnerič Oka manifolds: From Oka to Stein and back, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 22 (2014) no. 4, p. 747 | DOI:10.5802/afst.1388
  • Frank Kutzschebauch Flexibility Properties in Complex Analysis and Affine Algebraic Geometry, Automorphisms in Birational and Affine Geometry, Volume 79 (2014), p. 387 | DOI:10.1007/978-3-319-05681-4_22
  • Franc Forstnerič; Finnur Lárusson Holomorphic Flexibility Properties of Compact Complex Surfaces, International Mathematics Research Notices, Volume 2014 (2014) no. 13, p. 3714 | DOI:10.1093/imrn/rnt044
  • Antonio Alarcón; Franc Forstnerič Null curves and directed immersions of open Riemann surfaces, Inventiones mathematicae, Volume 196 (2014) no. 3, p. 733 | DOI:10.1007/s00222-013-0478-8
  • Finnur Lárusson Deformations of Oka manifolds, Mathematische Zeitschrift, Volume 272 (2012) no. 3-4, p. 1051 | DOI:10.1007/s00209-011-0973-9
  • Tyson Ritter Acyclic embeddings of open Riemann surfaces into new examples of elliptic manifolds, Proceedings of the American Mathematical Society, Volume 141 (2012) no. 2, p. 597 | DOI:10.1090/s0002-9939-2012-11430-3

Cité par 17 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: