Comptes Rendus
Harmonic Analysis
Boundedness of the square function and rectifiability
Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1051-1056.

Following a recent paper [X. Tolsa, Principal values for Riesz transforms and rectifiability, J. Funct. Anal. 254 (7) (2008) 1811–1863] we show that the finiteness of the square function associated with the Riesz transforms with respect to Hausdorff measure Hn (n is an integer) on a set E, implies that E is rectifiable.

On peut modifier l'article récent [X. Tolsa, Principal values for Riesz transforms and rectifiability, J. Funct. Anal. 254 (7) (2008) 1811–1863] pour démontrer que la convergence de la fonction carrée associée aux transformations de Riesz de mesure de Hausdorff Hn (n est un nombre entier) sur un compact E implique que E est rectifiable.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.07.007

Svitlana Mayboroda 1; Alexander Volberg 2

1 Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067, USA
2 Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
@article{CRMATH_2009__347_17-18_1051_0,
     author = {Svitlana Mayboroda and Alexander Volberg},
     title = {Boundedness of the square function and rectifiability},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1051--1056},
     publisher = {Elsevier},
     volume = {347},
     number = {17-18},
     year = {2009},
     doi = {10.1016/j.crma.2009.07.007},
     language = {en},
}
TY  - JOUR
AU  - Svitlana Mayboroda
AU  - Alexander Volberg
TI  - Boundedness of the square function and rectifiability
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1051
EP  - 1056
VL  - 347
IS  - 17-18
PB  - Elsevier
DO  - 10.1016/j.crma.2009.07.007
LA  - en
ID  - CRMATH_2009__347_17-18_1051_0
ER  - 
%0 Journal Article
%A Svitlana Mayboroda
%A Alexander Volberg
%T Boundedness of the square function and rectifiability
%J Comptes Rendus. Mathématique
%D 2009
%P 1051-1056
%V 347
%N 17-18
%I Elsevier
%R 10.1016/j.crma.2009.07.007
%G en
%F CRMATH_2009__347_17-18_1051_0
Svitlana Mayboroda; Alexander Volberg. Boundedness of the square function and rectifiability. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1051-1056. doi : 10.1016/j.crma.2009.07.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.07.007/

[1] G. David; S. Semmes Singular integrals and rectifiable sets in Rn: Beyond Lipschitz graphs, Astérisque, Volume 193 (1991)

[2] G. David; S. Semmes Analysis of and on Uniformly Rectifiable Sets, Mathematical Surveys and Monographs, vol. 38, American Mathematical Society, Providence, RI, 1993

[3] T. Hytönen The vector-valued non-homogeneous Tb theorem | arXiv

[4] J.C. Léger Menger curvature and rectifiability, Ann. of Math. (2), Volume 149 (1999) no. 3, pp. 831-869

[5] S. Mayboroda, A. Volberg, Square function and Riesz transform in non-integer dimensions, preprint

[6] M. Melnikov; J. Verdera A geometric proof of the L2 boundedness of the Cauchy integral on Lipschitz graphs, Internat. Math. Res. Notices, Volume 7 (1995), pp. 325-331

[7] F. Nazarov; S. Treil; A. Volberg The Tb-theorem on non-homogeneous spaces, Acta Math., Volume 190 (2003) no. 2, pp. 151-239

[8] L. Prat, Principal values for the signed Riesz kernels of non-integer dimensions, preprint

[9] X. Tolsa Principal values for the Cauchy integral and rectifiability, Proc. Amer. Math. Soc., Volume 128 (2000) no. 7, pp. 2111-2119

[10] X. Tolsa Principal values for Riesz transforms and rectifiability, J. Funct. Anal., Volume 254 (2008) no. 7, pp. 1811-1863

[11] X. Tolsa Uniform rectifiability, Calderón–Zygmund operators with odd kernel, and quasiorthogonality, Proc. London Math. Soc., Volume 98 (2009) no. 2, pp. 393-426

[12] A. Volberg Calderón–Zygmund Capacities and Operators on Nonhomogeneous Spaces, CBMS Regional Conference Series in Mathematics, vol. 100, American Mathematical Society, Providence, RI, 2003 (published for the Conference Board of the Mathematical Sciences, Washington, DC)

Cited by Sources:

The first author was partially supported by the NSF grant 0929382. The second author was partially supported by the NSF grant 0758552.

Comments - Policy