Comptes Rendus
Number Theory/Algebraic Geometry
Canonical subgroups over Hilbert modular varieties
[Sous-groupes canoniques sur les variétés modulaires de Hilbert]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 985-990.

Nous obtenons des résultats nouveaux sur la géométrie des variétés modulaires de Hilbert en caractéristique positive et sur les morphismes entre celles-ci. Grâce à ces résultats et des méthodes de géométrie rigide, nous développons une théorie des sous-groupes canoniques pour les variétés abéliennes à multiplication réelle.

We obtain new results on the geometry of Hilbert modular varieties in positive characteristic and morphisms between them. Using these results and methods of rigid geometry, we develop a theory of canonical subgroups for abelian varieties with real multiplication.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.07.008

Eyal Z. Goren 1 ; Payman L. Kassaei 2

1 Department of Mathematics, McGill University, 805 Sherbrooke St. West, Montreal, Quebec, Canada H3A 2K6
2 Department of Mathematics, King's College London, Strand, London WC2R 2LS, United Kingdom
@article{CRMATH_2009__347_17-18_985_0,
     author = {Eyal Z. Goren and Payman L. Kassaei},
     title = {Canonical subgroups over {Hilbert} modular varieties},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {985--990},
     publisher = {Elsevier},
     volume = {347},
     number = {17-18},
     year = {2009},
     doi = {10.1016/j.crma.2009.07.008},
     language = {en},
}
TY  - JOUR
AU  - Eyal Z. Goren
AU  - Payman L. Kassaei
TI  - Canonical subgroups over Hilbert modular varieties
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 985
EP  - 990
VL  - 347
IS  - 17-18
PB  - Elsevier
DO  - 10.1016/j.crma.2009.07.008
LA  - en
ID  - CRMATH_2009__347_17-18_985_0
ER  - 
%0 Journal Article
%A Eyal Z. Goren
%A Payman L. Kassaei
%T Canonical subgroups over Hilbert modular varieties
%J Comptes Rendus. Mathématique
%D 2009
%P 985-990
%V 347
%N 17-18
%I Elsevier
%R 10.1016/j.crma.2009.07.008
%G en
%F CRMATH_2009__347_17-18_985_0
Eyal Z. Goren; Payman L. Kassaei. Canonical subgroups over Hilbert modular varieties. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 985-990. doi : 10.1016/j.crma.2009.07.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.07.008/

[1] A. Abbes; A. Mokrane Sous-groupes canoniques et cycles évanescents p-adiques pour les variétés abéliennes, Publ. Math. Inst. Hautes Études Sci., Volume 99 (2004), pp. 117-162

[2] F. Andreatta; C. Gasbarri The canonical subgroup for families of abelian varieties, Compos. Math., Volume 143 (2007) no. 3, pp. 566-602

[3] K. Buzzard; R. Taylor Companion forms and weight one forms, Ann. of Math. (2), Volume 149 (1999) no. 3, pp. 905-919

[4] B. Conrad, Higher-level canonical subgroups in abelian varieties, preprint

[5] P. Deligne; G. Pappas Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant, Compositio Math., Volume 90 (1994) no. 1, pp. 59-79

[6] L. Fargues Application de Hodge–Tate duale d'un groupe de Lubin–Tate, immeuble de Bruhat–Tits du groupe linéaire et filtrations de ramification, Duke Math. J., Volume 140 (2007) no. 3, pp. 499-590

[7] E.Z. Goren Hasse invariants for Hilbert modular varieties, Israel J. Math., Volume 122 (2001), pp. 157-174

[8] E.Z. Goren; P.L. Kassaei The canonical subgroup: A “subgroup-free” approach, Comment. Math. Helv., Volume 81 (2006) no. 3, pp. 617-641

[9] E.Z. Goren; F. Oort Stratifications of Hilbert modular varieties, J. Algebraic Geom., Volume 9 (2000) no. 1, pp. 111-154

[10] P.L. Kassaei A gluing lemma and overconvergent modular forms, Duke Math. J., Volume 132 (2006) no. 3, pp. 509-529

[11] P.L. Kassaei Overconvergence, analytic continuation, and classicality: The case of curves, J. Reine Angew. Math., Volume 631 (2009), pp. 109-139

[12] N.M. Katz, p-Adic properties of modular schemes and modular forms, in: Modular Functions of One Variable III, in: Lecture Notes in Mathematics, vol. 350, 1973, pp. 69–190

[13] M. Kisin; K.F. Lai Overconvergent Hilbert modular forms, Amer. J. Math., Volume 127 (2005) no. 4, pp. 735-783

[14] H. Stamm On the reduction of the Hilbert–Blumenthal-moduli scheme with Γ0(p)-level structure, Forum Math., Volume 9 (1997) no. 4, pp. 405-455

[15] Y. Tian, Canonical subgroups of Barsotti–Tate groups, Ann. of Math., in press

Cité par Sources :

Commentaires - Politique