[Sous-groupes canoniques sur les variétés modulaires de Hilbert]
Nous obtenons des résultats nouveaux sur la géométrie des variétés modulaires de Hilbert en caractéristique positive et sur les morphismes entre celles-ci. Grâce à ces résultats et des méthodes de géométrie rigide, nous développons une théorie des sous-groupes canoniques pour les variétés abéliennes à multiplication réelle.
We obtain new results on the geometry of Hilbert modular varieties in positive characteristic and morphisms between them. Using these results and methods of rigid geometry, we develop a theory of canonical subgroups for abelian varieties with real multiplication.
Accepté le :
Publié le :
Eyal Z. Goren 1 ; Payman L. Kassaei 2
@article{CRMATH_2009__347_17-18_985_0, author = {Eyal Z. Goren and Payman L. Kassaei}, title = {Canonical subgroups over {Hilbert} modular varieties}, journal = {Comptes Rendus. Math\'ematique}, pages = {985--990}, publisher = {Elsevier}, volume = {347}, number = {17-18}, year = {2009}, doi = {10.1016/j.crma.2009.07.008}, language = {en}, }
Eyal Z. Goren; Payman L. Kassaei. Canonical subgroups over Hilbert modular varieties. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 985-990. doi : 10.1016/j.crma.2009.07.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.07.008/
[1] Sous-groupes canoniques et cycles évanescents p-adiques pour les variétés abéliennes, Publ. Math. Inst. Hautes Études Sci., Volume 99 (2004), pp. 117-162
[2] The canonical subgroup for families of abelian varieties, Compos. Math., Volume 143 (2007) no. 3, pp. 566-602
[3] Companion forms and weight one forms, Ann. of Math. (2), Volume 149 (1999) no. 3, pp. 905-919
[4] B. Conrad, Higher-level canonical subgroups in abelian varieties, preprint
[5] Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant, Compositio Math., Volume 90 (1994) no. 1, pp. 59-79
[6] Application de Hodge–Tate duale d'un groupe de Lubin–Tate, immeuble de Bruhat–Tits du groupe linéaire et filtrations de ramification, Duke Math. J., Volume 140 (2007) no. 3, pp. 499-590
[7] Hasse invariants for Hilbert modular varieties, Israel J. Math., Volume 122 (2001), pp. 157-174
[8] The canonical subgroup: A “subgroup-free” approach, Comment. Math. Helv., Volume 81 (2006) no. 3, pp. 617-641
[9] Stratifications of Hilbert modular varieties, J. Algebraic Geom., Volume 9 (2000) no. 1, pp. 111-154
[10] A gluing lemma and overconvergent modular forms, Duke Math. J., Volume 132 (2006) no. 3, pp. 509-529
[11] Overconvergence, analytic continuation, and classicality: The case of curves, J. Reine Angew. Math., Volume 631 (2009), pp. 109-139
[12] N.M. Katz, p-Adic properties of modular schemes and modular forms, in: Modular Functions of One Variable III, in: Lecture Notes in Mathematics, vol. 350, 1973, pp. 69–190
[13] Overconvergent Hilbert modular forms, Amer. J. Math., Volume 127 (2005) no. 4, pp. 735-783
[14] On the reduction of the Hilbert–Blumenthal-moduli scheme with -level structure, Forum Math., Volume 9 (1997) no. 4, pp. 405-455
[15] Y. Tian, Canonical subgroups of Barsotti–Tate groups, Ann. of Math., in press
Cité par Sources :
Commentaires - Politique