[Caractérisation explicite des coefficients des séries orthogonales convergentes presques partout]
On donne une complète caractérisation de la suite des nombres telle que converge, presque partout, pour tout système orthogonal dans tout espace .
La démonstration détaillées est donnée par A. Paszkiewicz dans l'article : On complete characterization of coefficients of a.e. convergent orthogonal series.
We characterize sequences of numbers such that converges a.e. for any orthonormal system in any -space.
Accepté le :
Publié le :
Adam Paszkiewicz 1
@article{CRMATH_2009__347_19-20_1213_0, author = {Adam Paszkiewicz}, title = {The explicit characterization of coefficients of a.e. convergent orthogonal series}, journal = {Comptes Rendus. Math\'ematique}, pages = {1213--1216}, publisher = {Elsevier}, volume = {347}, number = {19-20}, year = {2009}, doi = {10.1016/j.crma.2009.07.012}, language = {en}, }
Adam Paszkiewicz. The explicit characterization of coefficients of a.e. convergent orthogonal series. Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1213-1216. doi : 10.1016/j.crma.2009.07.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.07.012/
[1] On convergence of orthogonal series, Dokl. Akad. Nauk SSSR, Volume 159 (1964), pp. 243-246 (in Russian)
[2] A. Paszkiewicz, On complete characterization of coefficients of a.e. convergent orthogonal series and on majorizing measures, Invent. Math., in press
[3] Sample boundedness of stochastic processes under increment conditions, Ann. Probab., Volume 18 (1990), pp. 1-49
[4] M. Talagrand, Convergence of orthogonal series using stochastic processes, unpublished manuscript
[5] Über die Konvergenz der Orthogonalreihen, Acta Sci. Math. (Szeged), Volume 24 (1963), pp. 139-151
[6] Some theorems related to almost sure convergence of orthogonal series, Indag. Math. (N.S.), Volume 11 (2000), pp. 293-311
Cité par Sources :
Commentaires - Politique