Comptes Rendus
Numerical Analysis
A posteriori error estimate for a one-dimensional pollution problem in porous media
Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1217-1222.

We are interested in the discretization of a time-dependent pollution problem modeling the mass transfer of contaminant in porous media, by the implicit Euler scheme in time and vertex-centered finite volumes in space. The error estimator consists of two types of computable error indicators, the first one being linked to the time discretization and the second one to the space discretization.

On s'intéresse à la discrétisation d'un problème de pollution instationnaire, modélisant le transfert de masse d'un polluant en milieu poreux, par un schéma d'Euler implicite en temps et par volumes finis centrés sur les nœuds en espace. L'estimateur d'erreur a posteriori développé ici est constitué de deux indicateurs d'erreur, le premier lié à la discrétisation temporelle, le second à la discrétisation spatiale.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.07.017

Rajaa Aboulaich 1; Boujemâa Achchab 2; Aziz Darouichi 1

1 LERMA, École Mohammadia d'ingénieurs, avenue Ibn-Sina B.P. 765, Agdal, Rabat, Maroc
2 Université Hassan 1
@article{CRMATH_2009__347_19-20_1217_0,
     author = {Rajaa Aboulaich and Boujem\^aa Achchab and Aziz Darouichi},
     title = {A posteriori error estimate for a one-dimensional pollution problem in porous media},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1217--1222},
     publisher = {Elsevier},
     volume = {347},
     number = {19-20},
     year = {2009},
     doi = {10.1016/j.crma.2009.07.017},
     language = {en},
}
TY  - JOUR
AU  - Rajaa Aboulaich
AU  - Boujemâa Achchab
AU  - Aziz Darouichi
TI  - A posteriori error estimate for a one-dimensional pollution problem in porous media
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1217
EP  - 1222
VL  - 347
IS  - 19-20
PB  - Elsevier
DO  - 10.1016/j.crma.2009.07.017
LA  - en
ID  - CRMATH_2009__347_19-20_1217_0
ER  - 
%0 Journal Article
%A Rajaa Aboulaich
%A Boujemâa Achchab
%A Aziz Darouichi
%T A posteriori error estimate for a one-dimensional pollution problem in porous media
%J Comptes Rendus. Mathématique
%D 2009
%P 1217-1222
%V 347
%N 19-20
%I Elsevier
%R 10.1016/j.crma.2009.07.017
%G en
%F CRMATH_2009__347_19-20_1217_0
Rajaa Aboulaich; Boujemâa Achchab; Aziz Darouichi. A posteriori error estimate for a one-dimensional pollution problem in porous media. Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1217-1222. doi : 10.1016/j.crma.2009.07.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.07.017/

[1] R. Aboulaich; B. Achchab; A. Darouichi Approximation par volumes finis d'un problème de pollution en milieu poreux, Proceeding of 8th Days of Numerical Analysis and Optimization, ENIM-Rabat, Morocco, 2005

[2] R. Aboulaich; B. Achchab; A. Darouichi; D. Meskine A study of a pollution problem in porous media during vapor extraction, J. Math. Sci.: Adv. Appl., Volume 1 (2008) no. 3, pp. 635-662

[3] R. Aboulaich, B. Achchab, A. Darouichi, A posteriori error analysis in finite volumes approximations for a pollution problem in porous media, Internal report, LERMA, EMI Rabat, 2009

[4] R. Aboulaich; S. Afilal; J. Pousin Sur un modèle de pollution en mileux poreux, Maths recherche et application, Volume 2 (2000), pp. 108-120

[5] B. Achchab, A. Agouzal, G.C. Buscaglia, F. Oudin, Adaptive finite volume scheme for elliptic problems, submitted for publication

[6] S. Afilal, Sur un problème d'identification en milieu poreux, Thèse d'Etat, Ecole Mohammadia d'Ingénieurs Rabat, 7 mars 2000

[7] A. Bergam; C. Bernardi; Z. Mghazli A posteriori analysis of the finite element discretization of some parabolic equations, Math. Comp., Volume 74 (2004) no. 251, pp. 1117-1138

[8] C. Bernardi; B. Métivet Indicateurs d'erreur pour l'équation de la chaleur, Rev. Européenne Élém. Finis, Volume 9 (2000), pp. 425-438

[9] M. Bieterman; I. Babuska The finite element method for parabolic problems. II. A posteriori error estimation and adaptive approach, Numer. Math., Volume 40 (1982), pp. 339-371

[10] R. Eymard, T. Gallouet, R. Herbin, Finite volumes method, in: P.G. Ciarlet, J.L. Lions (Eds.), Handbook of Numerical Analysis, vol. 7, September 1997

[11] C. Johnson; Y.-Y. Nie; V. Thomée An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of parabolic problem, SIAM J. Numer. Anal., Volume 27 (1990), pp. 277-291

[12] S. Nicaise A posteriori error estimations of some cell centered finite volume methods for diffusion–convection–reaction problems, SIAM J. Numer. Anal., Volume 44 (2006), pp. 949-978

[13] M. Picasso Adaptive finite elements for a linear parabolic problem, Comput. Methods Appl. Mech. Engrg., Volume 167 (1998), pp. 223-237

[14] J. Pousin; A. Roukbi; R. Gourdon; P. Le Goff; P. Moszkowicz Évaporation d'une substance organique dans un milieu poreux, C. R. Acad. Sci. Paris, Sér. II b, Volume 327 (1999), pp. 371-377

[15] G. Sangalli Robust a posteriori estimator for advection–diffusion–reaction problems, M2AN, Volume 39 (2005) no. 2, pp. 319-348

[16] R. Verfürth A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley & Teubner, 1996

[17] R. Verfürth A posteriori error estimators for convection–diffusion equations, Numer. Math., Volume 4 (1998), pp. 641-663

[18] R. Verfürth A posteriori error estimation techniques for nonlinear elliptic and parabolic PDES, Rev. Européenne Élém. Finis., Volume 9 (2000), pp. 377-402

[19] M. Vohrali`k Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods, Numer. Math., Volume 111 (2008) no. 1, pp. 121-158

Cited by Sources:

This work has been supported in part by the CNRST Morocco, Projet d'établissement Université Hassan 1er Settat, the Volkswagen Foundation: Grant number I/79315, Hydro 3+3 project and Action Intégrée No MA/05, 115.

Comments - Policy