We give shorter proofs of the following known results: the radial Dunkl process associated with a reduced system and a strictly positive multiplicity function is the unique strong solution for all times t of a stochastic differential equation with a singular drift, the first hitting time of the Weyl chamber by a radial Dunkl process is finite almost surely for small values of the multiplicity function. The proof of the first result allows one to give a positive answer to a conjecture announced by Gallardo–Yor while that of the second shows that the process hits almost surely the wall corresponding to the simple root with a small multiplicity value.
On donne de courtes preuves des résultats suivants : le processus de Dunkl radial associé à un système de racines réduit et une fonction de multiplicité strictement positive est l'unique solution forte d'une équation différentielle stochastique à dérive singulière pour tout temps t, le temps d'atteinte de la frontière de la chambre de Weyl est fini presque sûrement pour les petites valeurs de la fonction de multiplicité. La preuve du premier résultat permet de donner une réponse positive à une conjecture de Gallardo–Yor, alors que celle du deuxième résultat montre que le processus touche précisemment le mur correspondant à la racine simple pour laquelle la valeur de la multiplicité est suffisamment petite.
Accepted:
Published online:
Nizar Demni 1
@article{CRMATH_2009__347_19-20_1125_0, author = {Nizar Demni}, title = {Radial {Dunkl} processes: {Existence,} uniqueness and hitting time}, journal = {Comptes Rendus. Math\'ematique}, pages = {1125--1128}, publisher = {Elsevier}, volume = {347}, number = {19-20}, year = {2009}, doi = {10.1016/j.crma.2009.08.003}, language = {en}, }
Nizar Demni. Radial Dunkl processes: Existence, uniqueness and hitting time. Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1125-1128. doi : 10.1016/j.crma.2009.08.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.08.003/
[1] Diffusing particles with electrostatic repulsions, Probab. Theory Related Fields, Volume 107 (1997), pp. 429-449
[2] Brownian particles with electrostatic repulsion on the circle: Dyson's model for unitary random matrices revisited, ESAIM: Probability and Statistics, Volume 5 (2001), pp. 203-224
[3] Harmonic and Stochastic Analysis of Dunkl Processes, Travaux en Cours, Hermann, 2008
[4] , Reflections Groups and Coxeter Groups, vol. 29, Cambridge University Press, 2000
[5] Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1991
[6] Continuous Martingales and Brownian Motion, Springer, 1999
[7] The Heckman–Opdam Markov processes, Probab. Theory Related Fields, Volume 138 (2007) no. 3–4, pp. 495-519
Cited by Sources:
Comments - Politique