[Des fibrés vectoriels sur les variétés rationnellement connexes]
Soit X une variété rationnellement connexe sur
Let X be a rationally connected smooth projective variety defined over
Accepté le :
Publié le :
Indranil Biswas 1 ; João Pedro P. dos Santos 2
@article{CRMATH_2009__347_19-20_1173_0, author = {Indranil Biswas and Jo\~ao Pedro P. dos Santos}, title = {On the vector bundles over rationally connected varieties}, journal = {Comptes Rendus. Math\'ematique}, pages = {1173--1176}, publisher = {Elsevier}, volume = {347}, number = {19-20}, year = {2009}, doi = {10.1016/j.crma.2009.09.006}, language = {en}, }
TY - JOUR AU - Indranil Biswas AU - João Pedro P. dos Santos TI - On the vector bundles over rationally connected varieties JO - Comptes Rendus. Mathématique PY - 2009 SP - 1173 EP - 1176 VL - 347 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2009.09.006 LA - en ID - CRMATH_2009__347_19-20_1173_0 ER -
Indranil Biswas; João Pedro P. dos Santos. On the vector bundles over rationally connected varieties. Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1173-1176. doi : 10.1016/j.crma.2009.09.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.006/
[1] On manifolds whose tangent bundle contains an ample subbundle, Invent. Math., Volume 146 (2001), pp. 209-217
[2] Stacks of stable maps and Gromov–Witten invariants, Duke Math. J., Volume 85 (1996), pp. 1-60
[3] On semistable principal bundles over a complex projective manifold, Int. Math. Res. Not. IMRN, Volume 12 (2008) (Art. ID rnn035)
[4] On twistor spaces of the class
[5] Notes on stable maps and quantum cohomology | arXiv
[6] Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math., Volume 79 (1957), pp. 121-138
[7] Fundamental groups of rationally connected varieties, Michigan Math. J., Volume 48 (2000), pp. 359-368
[8] Rationally connected varieties and fundamental groups, Budapest, 2001 (Bolyai Soc. Math. Stud.), Volume vol. 12, Springer, Berlin (2003), pp. 69-92 | arXiv
[9] Rationally connected varieties, J. Algebraic Geom., Volume 1 (1992), pp. 429-448
[10] Champs algébriques, Ergeb. Math. Grenzgeb., vol. 39, Springer, 2000
[11] On compactification of schemes, Manuscr. Math., Volume 80 (1993), pp. 95-111
[12] Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Oxford University Press, London, 1970
[13] Higgs bundles and local systems, Publ. Math. Inst. Hautes Études Sci., Volume 75 (1992), pp. 5-95
- Uniform Bundles on Generalized Grassmannians, International Mathematics Research Notices, Volume 2025 (2025) no. 5 | DOI:10.1093/imrn/rnaf042
- Numerical characterization of some toric fiber bundles, Mathematische Zeitschrift, Volume 300 (2022) no. 4, pp. 3357-3382 | DOI:10.1007/s00209-021-02760-4 | Zbl:1491.14028
- Connections and restrictions to curves, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 356 (2018) no. 6, pp. 674-678 | DOI:10.1016/j.crma.2018.05.004 | Zbl:1393.14033
- Bruzzo's conjecture, Journal of Geometry and Physics, Volume 118 (2017), pp. 181-191 | DOI:10.1016/j.geomphys.2016.08.012 | Zbl:1372.14034
- On rank 2 vector bundles on Fano manifolds, Kyoto Journal of Mathematics, Volume 54 (2014) no. 1, pp. 167-197 | DOI:10.1215/21562261-2400310 | Zbl:1295.14038
Cité par 5 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier