We prove that a homogeneous Einstein–Randers space with negative Ricci curvature must be Riemannian.
Nous prouvons que l'espace Einstein–Randers homogéne avec courbure de Ricci négative doit être Riemannian.
Accepted:
Published online:
Shaoqiang Deng 1; Zixin Hou 1
@article{CRMATH_2009__347_19-20_1169_0, author = {Shaoqiang Deng and Zixin Hou}, title = {Homogeneous {Einstein{\textendash}Randers} spaces of negative {Ricci} curvature}, journal = {Comptes Rendus. Math\'ematique}, pages = {1169--1172}, publisher = {Elsevier}, volume = {347}, number = {19-20}, year = {2009}, doi = {10.1016/j.crma.2009.08.006}, language = {en}, }
Shaoqiang Deng; Zixin Hou. Homogeneous Einstein–Randers spaces of negative Ricci curvature. Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1169-1172. doi : 10.1016/j.crma.2009.08.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.08.006/
[1] Sur les espaces de Finsler à courbures sectionelles constantes, Acad. Roy. Belg. Bull. Cl. Sci., Volume 74 (1988), pp. 281-322
[2] Structure of homogeneous Riemannian manifolds with zero Ricci curvature, Functional Anal. Appl., Volume 9 (1975), pp. 95-102
[3] Ricci and flag curvatures in Finsler geometry (D. Bao; R.L. Bryant; S.S. Chern; Z. Shen, eds.), A Sampler of Riemannian–Finsler Geometry, Cambridge University Press, 2004, pp. 197-260
[4] Zermelo navigation on Riemannian manifolds, J. Diff. Geom., Volume 66 (2004), pp. 377-435
[5] Einstein Manifolds, Springer-Verlag, 1987
[6] The group of isometries of a Finsler space, Pacific J. Math., Volume 207 (2002), pp. 149-157
[7] Invariant Randers metrics on homogeneous Riemannian manifold, J. Phys. A: Math. Gen., Volume 37 (2004), pp. 4353-4360 (Corrigendum: J. Phys. A: Math. Gen., 39, 2006, pp. 5249-5250)
[8] Finsler metrics with and , Canadian J. Math., Volume 55 (2003), pp. 112-132
Cited by Sources:
☆ Supported by NSFC of China (No. 10671096).
Comments - Politique