Comptes Rendus
Geometry
Homogeneous Einstein–Randers spaces of negative Ricci curvature
[Espaces Einstein–Randers homogènes avec courbure de Ricci négative]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1169-1172.

We prove that a homogeneous Einstein–Randers space with negative Ricci curvature must be Riemannian.

Nous prouvons que l'espace Einstein–Randers homogéne avec courbure de Ricci négative doit être Riemannian.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.08.006

Shaoqiang Deng 1 ; Zixin Hou 1

1 School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, PR China
@article{CRMATH_2009__347_19-20_1169_0,
     author = {Shaoqiang Deng and Zixin Hou},
     title = {Homogeneous {Einstein{\textendash}Randers} spaces of negative {Ricci} curvature},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1169--1172},
     publisher = {Elsevier},
     volume = {347},
     number = {19-20},
     year = {2009},
     doi = {10.1016/j.crma.2009.08.006},
     language = {en},
}
TY  - JOUR
AU  - Shaoqiang Deng
AU  - Zixin Hou
TI  - Homogeneous Einstein–Randers spaces of negative Ricci curvature
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1169
EP  - 1172
VL  - 347
IS  - 19-20
PB  - Elsevier
DO  - 10.1016/j.crma.2009.08.006
LA  - en
ID  - CRMATH_2009__347_19-20_1169_0
ER  - 
%0 Journal Article
%A Shaoqiang Deng
%A Zixin Hou
%T Homogeneous Einstein–Randers spaces of negative Ricci curvature
%J Comptes Rendus. Mathématique
%D 2009
%P 1169-1172
%V 347
%N 19-20
%I Elsevier
%R 10.1016/j.crma.2009.08.006
%G en
%F CRMATH_2009__347_19-20_1169_0
Shaoqiang Deng; Zixin Hou. Homogeneous Einstein–Randers spaces of negative Ricci curvature. Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1169-1172. doi : 10.1016/j.crma.2009.08.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.08.006/

[1] H. Akbar-Zadeh Sur les espaces de Finsler à courbures sectionelles constantes, Acad. Roy. Belg. Bull. Cl. Sci., Volume 74 (1988), pp. 281-322

[2] D.V. Alekseevskii; B.N. Kinmel'fel'd Structure of homogeneous Riemannian manifolds with zero Ricci curvature, Functional Anal. Appl., Volume 9 (1975), pp. 95-102

[3] D. Bao; C. Robles Ricci and flag curvatures in Finsler geometry (D. Bao; R.L. Bryant; S.S. Chern; Z. Shen, eds.), A Sampler of Riemannian–Finsler Geometry, Cambridge University Press, 2004, pp. 197-260

[4] D. Bao; C. Robles; Z. Shen Zermelo navigation on Riemannian manifolds, J. Diff. Geom., Volume 66 (2004), pp. 377-435

[5] A. Besse Einstein Manifolds, Springer-Verlag, 1987

[6] S. Deng; Z. Hou The group of isometries of a Finsler space, Pacific J. Math., Volume 207 (2002), pp. 149-157

[7] S. Deng; Z. Hou Invariant Randers metrics on homogeneous Riemannian manifold, J. Phys. A: Math. Gen., Volume 37 (2004), pp. 4353-4360 (Corrigendum: J. Phys. A: Math. Gen., 39, 2006, pp. 5249-5250)

[8] Z. Shen Finsler metrics with K=0 and S=0, Canadian J. Math., Volume 55 (2003), pp. 112-132

  • Wenyan Luo; Ju Tan; Na Xu New non-geodesic orbit Einstein metrics on Sp(n), manuscripta mathematica, Volume 176 (2025) no. 1 | DOI:10.1007/s00229-025-01614-1
  • Bichao Sun; Ju Tan Riemannian and Randers Einstein Metrics on SO(n) Which Are Non-naturally Reductive, Frontiers of Mathematics, Volume 19 (2024) no. 5, p. 825 | DOI:10.1007/s11464-023-0096-8
  • Xiaosheng Li New Einstein-Randers metrics on certain homogeneous manifolds arising from the generalized Wallach spaces, AIMS Mathematics, Volume 8 (2023) no. 10, p. 23062 | DOI:10.3934/math.20231174
  • Ju Tan; Na Xu New Einstein-Randers metrics on homogeneous spaces arising from unitary groups, Journal of Geometry and Physics, Volume 174 (2022), p. 104456 | DOI:10.1016/j.geomphys.2022.104456
  • Akbar Sadighi; Megerdich Toomanian; Behzad Najafi On Homogeneous Randers Metrics, International Electronic Journal of Geometry, Volume 14 (2021) no. 1, p. 217 | DOI:10.36890/iejg.797112
  • Huibin Chen; Chao Chen; Zhiqi Chen New Invariant Einstein–Randers Metrics on Stiefel ManifoldsV2pRn=SO(n)/SO(n2p), Results in Mathematics, Volume 76 (2021) no. 1 | DOI:10.1007/s00025-020-01333-x
  • Ju Tan; Na Xu Homogeneous Einstein–Randers metrics on symplectic groups, Journal of Mathematical Analysis and Applications, Volume 472 (2019) no. 2, p. 1902 | DOI:10.1016/j.jmaa.2018.12.028
  • Chao chen; Zhiqi chen; Yuwang Hu Einstein metrics and Einstein–Randers metrics on a class of homogeneous manifolds, International Journal of Geometric Methods in Modern Physics, Volume 15 (2018) no. 04, p. 1850052 | DOI:10.1142/s0219887818500524
  • Ju Tan; Na Xu Homogeneous Einstein–Randers metrics on some Stiefel manifolds, Journal of Geometry and Physics, Volume 131 (2018), p. 182 | DOI:10.1016/j.geomphys.2018.05.005
  • Ju Tan; Na Xu New Einstein–Randers metrics on some homogeneous manifolds, Mathematische Nachrichten, Volume 291 (2018) no. 17-18, p. 2693 | DOI:10.1002/mana.201800075
  • Shaoqiang Deng; Ming Xu Recent progress on homogeneous Finsler spaces with positive curvature, European Journal of Mathematics, Volume 3 (2017) no. 4, p. 974 | DOI:10.1007/s40879-017-0148-2
  • Shaoqiang Deng; Jifu Li Some cohomogeneity one Einstein–Randers metrics on 4-manifolds, International Journal of Geometric Methods in Modern Physics, Volume 14 (2017) no. 03, p. 1750044 | DOI:10.1142/s021988781750044x
  • Zaili Yan; Shaoqiang Deng Homogeneous Einstein (α,β)-metrics on compact simple Lie groups and spheres, Nonlinear Analysis: Theory, Methods Applications, Volume 148 (2017), p. 147 | DOI:10.1016/j.na.2016.09.016
  • Zaili Yan; Shaoqiang Deng On homogeneous Einstein (α,β)-metrics, Journal of Geometry and Physics, Volume 103 (2016), p. 20 | DOI:10.1016/j.geomphys.2015.12.008
  • Xingda Liu; Shaoqiang Deng Homogeneous Einstein–Randers metrics on Aloff–Wallach spaces, Journal of Geometry and Physics, Volume 98 (2015), p. 196 | DOI:10.1016/j.geomphys.2015.08.009
  • ZhiQi Chen; ShaoQiang Deng; Ke Liang Homogeneous manifolds admitting non-Riemannian Einstein-Randers metrics, Science China Mathematics, Volume 58 (2015) no. 7, p. 1473 | DOI:10.1007/s11425-014-4932-x
  • Zaili Yan; Shaoqiang Deng Finsler spaces whose geodesics are orbits, Differential Geometry and its Applications, Volume 36 (2014), p. 1 | DOI:10.1016/j.difgeo.2014.06.006
  • Yifang Kang; Zhiqi Chen Einstein Riemannian metrics and Einstein–Randers metrics on a class of homogeneous manifolds, Nonlinear Analysis: Theory, Methods Applications, Volume 107 (2014), p. 86 | DOI:10.1016/j.na.2014.05.003
  • Hui Wang; Shaoqiang Deng Invariant Einstein–Randers metrics on Stiefel manifolds, Nonlinear Analysis: Real World Applications, Volume 14 (2013) no. 1, p. 594 | DOI:10.1016/j.nonrwa.2012.07.019
  • Zhiqi Chen; Shaoqiang Deng; Ke Liang Einstein–Randers metrics on some homogeneous manifolds, Nonlinear Analysis: Theory, Methods Applications, Volume 91 (2013), p. 114 | DOI:10.1016/j.na.2013.06.014
  • Hui Wang; Shaoqiang Deng Left Invariant Einstein–Randers Metrics on Compact Lie Groups, Canadian Mathematical Bulletin, Volume 55 (2012) no. 4, p. 870 | DOI:10.4153/cmb-2011-145-6
  • Shaoqiang Deng Introduction to Finsler Geometry, Homogeneous Finsler Spaces (2012), p. 1 | DOI:10.1007/978-1-4614-4244-8_1
  • Shaoqiang Deng Symmetric Finsler Spaces, Homogeneous Finsler Spaces (2012), p. 105 | DOI:10.1007/978-1-4614-4244-8_5
  • Shaoqiang Deng Weakly Symmetric Finsler Spaces, Homogeneous Finsler Spaces (2012), p. 135 | DOI:10.1007/978-1-4614-4244-8_6
  • Shaoqiang Deng Homogeneous Randers Spaces, Homogeneous Finsler Spaces (2012), p. 173 | DOI:10.1007/978-1-4614-4244-8_7
  • Shaoqiang Deng Lie Groups and Homogeneous Spaces, Homogeneous Finsler Spaces (2012), p. 31 | DOI:10.1007/978-1-4614-4244-8_2
  • Shaoqiang Deng The Group of Isometries, Homogeneous Finsler Spaces (2012), p. 59 | DOI:10.1007/978-1-4614-4244-8_3
  • Shaoqiang Deng Homogeneous Finsler Spaces, Homogeneous Finsler Spaces (2012), p. 79 | DOI:10.1007/978-1-4614-4244-8_4
  • Zhiguang Hu; Shaoqiang Deng Three dimensional homogeneous Finsler manifolds, Mathematische Nachrichten, Volume 285 (2012) no. 10, p. 1243 | DOI:10.1002/mana.201100100
  • Hui Wang; Libing Huang; Shaoqiang Deng Homogeneous Einstein–Randers metrics on spheres, Nonlinear Analysis: Theory, Methods Applications, Volume 74 (2011) no. 17, p. 6295 | DOI:10.1016/j.na.2011.06.008
  • Hui Wang; Shaoqiang Deng Some Einstein–Randers metrics on homogeneous spaces, Nonlinear Analysis: Theory, Methods Applications, Volume 72 (2010) no. 12, p. 4407 | DOI:10.1016/j.na.2010.02.015

Cité par 31 documents. Sources : Crossref

Supported by NSFC of China (No. 10671096).

Commentaires - Politique