[Espaces Einstein–Randers homogènes avec courbure de Ricci négative]
We prove that a homogeneous Einstein–Randers space with negative Ricci curvature must be Riemannian.
Nous prouvons que l'espace Einstein–Randers homogéne avec courbure de Ricci négative doit être Riemannian.
Accepté le :
Publié le :
Shaoqiang Deng 1 ; Zixin Hou 1
@article{CRMATH_2009__347_19-20_1169_0, author = {Shaoqiang Deng and Zixin Hou}, title = {Homogeneous {Einstein{\textendash}Randers} spaces of negative {Ricci} curvature}, journal = {Comptes Rendus. Math\'ematique}, pages = {1169--1172}, publisher = {Elsevier}, volume = {347}, number = {19-20}, year = {2009}, doi = {10.1016/j.crma.2009.08.006}, language = {en}, }
Shaoqiang Deng; Zixin Hou. Homogeneous Einstein–Randers spaces of negative Ricci curvature. Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1169-1172. doi : 10.1016/j.crma.2009.08.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.08.006/
[1] Sur les espaces de Finsler à courbures sectionelles constantes, Acad. Roy. Belg. Bull. Cl. Sci., Volume 74 (1988), pp. 281-322
[2] Structure of homogeneous Riemannian manifolds with zero Ricci curvature, Functional Anal. Appl., Volume 9 (1975), pp. 95-102
[3] Ricci and flag curvatures in Finsler geometry (D. Bao; R.L. Bryant; S.S. Chern; Z. Shen, eds.), A Sampler of Riemannian–Finsler Geometry, Cambridge University Press, 2004, pp. 197-260
[4] Zermelo navigation on Riemannian manifolds, J. Diff. Geom., Volume 66 (2004), pp. 377-435
[5] Einstein Manifolds, Springer-Verlag, 1987
[6] The group of isometries of a Finsler space, Pacific J. Math., Volume 207 (2002), pp. 149-157
[7] Invariant Randers metrics on homogeneous Riemannian manifold, J. Phys. A: Math. Gen., Volume 37 (2004), pp. 4353-4360 (Corrigendum: J. Phys. A: Math. Gen., 39, 2006, pp. 5249-5250)
[8] Finsler metrics with
- New non-geodesic orbit Einstein metrics on Sp(n), manuscripta mathematica, Volume 176 (2025) no. 1 | DOI:10.1007/s00229-025-01614-1
- Riemannian and Randers Einstein Metrics on SO(n) Which Are Non-naturally Reductive, Frontiers of Mathematics, Volume 19 (2024) no. 5, p. 825 | DOI:10.1007/s11464-023-0096-8
- New Einstein-Randers metrics on certain homogeneous manifolds arising from the generalized Wallach spaces, AIMS Mathematics, Volume 8 (2023) no. 10, p. 23062 | DOI:10.3934/math.20231174
- New Einstein-Randers metrics on homogeneous spaces arising from unitary groups, Journal of Geometry and Physics, Volume 174 (2022), p. 104456 | DOI:10.1016/j.geomphys.2022.104456
- On Homogeneous Randers Metrics, International Electronic Journal of Geometry, Volume 14 (2021) no. 1, p. 217 | DOI:10.36890/iejg.797112
- New Invariant Einstein–Randers Metrics on Stiefel Manifolds
, Results in Mathematics, Volume 76 (2021) no. 1 | DOI:10.1007/s00025-020-01333-x - Homogeneous Einstein–Randers metrics on symplectic groups, Journal of Mathematical Analysis and Applications, Volume 472 (2019) no. 2, p. 1902 | DOI:10.1016/j.jmaa.2018.12.028
- Einstein metrics and Einstein–Randers metrics on a class of homogeneous manifolds, International Journal of Geometric Methods in Modern Physics, Volume 15 (2018) no. 04, p. 1850052 | DOI:10.1142/s0219887818500524
- Homogeneous Einstein–Randers metrics on some Stiefel manifolds, Journal of Geometry and Physics, Volume 131 (2018), p. 182 | DOI:10.1016/j.geomphys.2018.05.005
- New Einstein–Randers metrics on some homogeneous manifolds, Mathematische Nachrichten, Volume 291 (2018) no. 17-18, p. 2693 | DOI:10.1002/mana.201800075
- Recent progress on homogeneous Finsler spaces with positive curvature, European Journal of Mathematics, Volume 3 (2017) no. 4, p. 974 | DOI:10.1007/s40879-017-0148-2
- Some cohomogeneity one Einstein–Randers metrics on 4-manifolds, International Journal of Geometric Methods in Modern Physics, Volume 14 (2017) no. 03, p. 1750044 | DOI:10.1142/s021988781750044x
- Homogeneous Einstein (α,β)-metrics on compact simple Lie groups and spheres, Nonlinear Analysis: Theory, Methods Applications, Volume 148 (2017), p. 147 | DOI:10.1016/j.na.2016.09.016
- On homogeneous Einstein (α,β)-metrics, Journal of Geometry and Physics, Volume 103 (2016), p. 20 | DOI:10.1016/j.geomphys.2015.12.008
- Homogeneous Einstein–Randers metrics on Aloff–Wallach spaces, Journal of Geometry and Physics, Volume 98 (2015), p. 196 | DOI:10.1016/j.geomphys.2015.08.009
- Homogeneous manifolds admitting non-Riemannian Einstein-Randers metrics, Science China Mathematics, Volume 58 (2015) no. 7, p. 1473 | DOI:10.1007/s11425-014-4932-x
- Finsler spaces whose geodesics are orbits, Differential Geometry and its Applications, Volume 36 (2014), p. 1 | DOI:10.1016/j.difgeo.2014.06.006
- Einstein Riemannian metrics and Einstein–Randers metrics on a class of homogeneous manifolds, Nonlinear Analysis: Theory, Methods Applications, Volume 107 (2014), p. 86 | DOI:10.1016/j.na.2014.05.003
- Invariant Einstein–Randers metrics on Stiefel manifolds, Nonlinear Analysis: Real World Applications, Volume 14 (2013) no. 1, p. 594 | DOI:10.1016/j.nonrwa.2012.07.019
- Einstein–Randers metrics on some homogeneous manifolds, Nonlinear Analysis: Theory, Methods Applications, Volume 91 (2013), p. 114 | DOI:10.1016/j.na.2013.06.014
- Left Invariant Einstein–Randers Metrics on Compact Lie Groups, Canadian Mathematical Bulletin, Volume 55 (2012) no. 4, p. 870 | DOI:10.4153/cmb-2011-145-6
- Introduction to Finsler Geometry, Homogeneous Finsler Spaces (2012), p. 1 | DOI:10.1007/978-1-4614-4244-8_1
- Symmetric Finsler Spaces, Homogeneous Finsler Spaces (2012), p. 105 | DOI:10.1007/978-1-4614-4244-8_5
- Weakly Symmetric Finsler Spaces, Homogeneous Finsler Spaces (2012), p. 135 | DOI:10.1007/978-1-4614-4244-8_6
- Homogeneous Randers Spaces, Homogeneous Finsler Spaces (2012), p. 173 | DOI:10.1007/978-1-4614-4244-8_7
- Lie Groups and Homogeneous Spaces, Homogeneous Finsler Spaces (2012), p. 31 | DOI:10.1007/978-1-4614-4244-8_2
- The Group of Isometries, Homogeneous Finsler Spaces (2012), p. 59 | DOI:10.1007/978-1-4614-4244-8_3
- Homogeneous Finsler Spaces, Homogeneous Finsler Spaces (2012), p. 79 | DOI:10.1007/978-1-4614-4244-8_4
- Three dimensional homogeneous Finsler manifolds, Mathematische Nachrichten, Volume 285 (2012) no. 10, p. 1243 | DOI:10.1002/mana.201100100
- Homogeneous Einstein–Randers metrics on spheres, Nonlinear Analysis: Theory, Methods Applications, Volume 74 (2011) no. 17, p. 6295 | DOI:10.1016/j.na.2011.06.008
- Some Einstein–Randers metrics on homogeneous spaces, Nonlinear Analysis: Theory, Methods Applications, Volume 72 (2010) no. 12, p. 4407 | DOI:10.1016/j.na.2010.02.015
Cité par 31 documents. Sources : Crossref
☆ Supported by NSFC of China (No. 10671096).
Commentaires - Politique