[Sur le lemme de Borel–Cantelli et sa généralisation]
Let
Soit
Accepté le :
Publié le :
Chunrong Feng 1, 2 ; Liangpan Li 1, 3 ; Jian Shen 3
@article{CRMATH_2009__347_21-22_1313_0, author = {Chunrong Feng and Liangpan Li and Jian Shen}, title = {On the {Borel{\textendash}Cantelli} lemma and its generalization}, journal = {Comptes Rendus. Math\'ematique}, pages = {1313--1316}, publisher = {Elsevier}, volume = {347}, number = {21-22}, year = {2009}, doi = {10.1016/j.crma.2009.09.011}, language = {en}, }
Chunrong Feng; Liangpan Li; Jian Shen. On the Borel–Cantelli lemma and its generalization. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1313-1316. doi : 10.1016/j.crma.2009.09.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.011/
[1] On the Borel–Cantelli lemma and moments, Comment. Math. Univ. Carolin., Volume 47 (2006), pp. 669-679
[2] On the application of the Borel–Cantelli lemma, Trans. Amer. Math. Soc., Volume 72 (1952), pp. 179-186
[3] An inequality for probabilities, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 504-507
[4] On Cantor's series with convergent
[5] A note on the Borel–Cantelli lemma, Illinois J. Math., Volume 8 (1964), pp. 248-251
[6] On the Erdös–Rényi generalization of the Borel–Cantelli lemma, Studia Sci. Math. Hungar., Volume 18 (1983), pp. 173-182
[7] On the sequence of partial maxima of some random sequence, Stochastic Process. Appl., Volume 16 (1983), pp. 85-98
[8] Probability Theory, North-Holland Series in Applied Mathematics and Mechanics, vol. 10, North-Holland Publishing Co., Amsterdam/London, 1970 (German version 1962, French version 1966, new Hungarian edition 1965)
[9] Principles of Random Walk, Van Nostrand, Princeton, 1964
[10] J. Yan, A simple proof of two generalized Borel–Cantelli lemmas, In memoriam Paul-André Meyer: Seminar on Probability Theory XXXIX, in: Lecture Notes in Mathematics, vol. 1874, Springer-Verlag, Berlin, 2006, pp. 77–79
- Moment estimates in the first Borel–Cantelli Lemma with applications to mean deviation frequencies, Statistics Probability Letters, Volume 190 (2022), p. 109636 | DOI:10.1016/j.spl.2022.109636
- Linear programming bounds on the union probability, Communications in Statistics - Simulation and Computation, Volume 48 (2019) no. 9, p. 2845 | DOI:10.1080/03610918.2018.1468459
- Upper and lower bounds of Borel–Cantelli Lemma in a general measure space, Stochastic Analysis and Applications, Volume 36 (2018) no. 3, p. 443 | DOI:10.1080/07362994.2017.1417136
- On inequalities for values of first jumps of distribution functions and Hölder’s inequality, Statistics Probability Letters, Volume 126 (2017), p. 150 | DOI:10.1016/j.spl.2017.03.002
- THE DUFFIN–SCHAEFFER‐TYPE CONJECTURES IN VARIOUS LOCAL FIELDS, Mathematika, Volume 62 (2016) no. 3, p. 753 | DOI:10.1112/s002557931600005x
- On bounding the union probability using partial weighted information, Statistics Probability Letters, Volume 116 (2016), p. 38 | DOI:10.1016/j.spl.2016.04.017
- On lower and upper bounds for probabilities of unions and the Borel-Cantelli lemma, Studia Scientiarum Mathematicarum Hungarica, Volume 52 (2015) no. 1, p. 102 | DOI:10.1556/sscmath.52.2015.1.1304
- Extensions of the Borel–Cantelli lemma in general measure spaces, Journal of Theoretical Probability, Volume 27 (2014) no. 4, p. 1229 | DOI:10.1007/s10959-013-0526-8
- On inequalities for probabilities of unions of events and the Borel-Cantelli lemma, Vestnik St. Petersburg University: Mathematics, Volume 47 (2014) no. 2, p. 68 | DOI:10.3103/s1063454114020034
- On conditional Borel–Cantelli lemmas for sequences of random variables, Journal of Mathematical Analysis and Applications, Volume 399 (2013) no. 1, p. 156 | DOI:10.1016/j.jmaa.2012.10.001
- On the Móri-Székely conjectures for the Borel-Cantelli lemma, Studia Scientiarum Mathematicarum Hungarica, Volume 50 (2013) no. 2, p. 280 | DOI:10.1556/sscmath.50.2013.2.1241
- Bounds for probabilities of unions of events and the Borel–Cantelli lemma, Statistics Probability Letters, Volume 82 (2012) no. 12, p. 2189 | DOI:10.1016/j.spl.2012.08.002
- A note on the bilateral inequality for a sequence of random variables, Statistics Probability Letters, Volume 82 (2012) no. 5, p. 871 | DOI:10.1016/j.spl.2012.02.004
- Introductory Chapter, The Borel-Cantelli Lemma, Volume 2 (2012), p. 1 | DOI:10.1007/978-81-322-0677-4_1
- Variants of the Second BCL, The Borel-Cantelli Lemma, Volume 2 (2012), p. 63 | DOI:10.1007/978-81-322-0677-4_3
Cité par 15 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier