[Stabilité d'équilibre relatif et indice de Morse de configuration centrale]
For the planar n-body problem, if the Morse index or the nullity of a central configuration as a critical point of Newton potential function restricted on the “shape sphere” is odd, then the relative equilibrium corresponding to the central configuration is linearly unstable.
Dans le problème plan des n corps, si l'indice de Morse ou la nullité d'une configuration centrale vue comme un point critique du potentiel newtonien restreint à la « sphère des formes » est impair, l'équilibre relatif correspondant est linéairement instable.
Accepté le :
Publié le :
Xijun Hu 1 ; Shanzhong Sun 2
@article{CRMATH_2009__347_21-22_1309_0, author = {Xijun Hu and Shanzhong Sun}, title = {Stability of relative equilibria and {Morse} index of central configurations}, journal = {Comptes Rendus. Math\'ematique}, pages = {1309--1312}, publisher = {Elsevier}, volume = {347}, number = {21-22}, year = {2009}, doi = {10.1016/j.crma.2009.09.023}, language = {en}, }
TY - JOUR AU - Xijun Hu AU - Shanzhong Sun TI - Stability of relative equilibria and Morse index of central configurations JO - Comptes Rendus. Mathématique PY - 2009 SP - 1309 EP - 1312 VL - 347 IS - 21-22 PB - Elsevier DO - 10.1016/j.crma.2009.09.023 LA - en ID - CRMATH_2009__347_21-22_1309_0 ER -
Xijun Hu; Shanzhong Sun. Stability of relative equilibria and Morse index of central configurations. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1309-1312. doi : 10.1016/j.crma.2009.09.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.023/
[1] Symmetry of planar four-body convex central configurations, Proc. R. Soc. A, Volume 464 (2008), pp. 1355-1365
[2] Index Theory for Symplectic Paths with Applications, Progress in Math., vol. 207, Birkhäuser, Basel, 2002
[3] Planar central configuration estimates in the N-body problem, Ergodic Theory Dyn. System., Volume 16 (1996), pp. 1059-1070
[4] Elliptic relative equilibria in the N-body problem, J. Differential Equations, Volume 214 (2005), pp. 256-298
[5] Celestial Mechanics, ICTP Lecture Notes, 1994
[6] Linear stability of relative equilibria with a dominant mass, J. Dynam. Differential Equations, Volume 6 (1994), pp. 37-51
[7] Classifying relative equilibria, I, Bull. Amer. Math. Soc., Volume 79 (1973), pp. 904-908
[8] Spectral instability of relative equilibria in the planar n-body problem, Nonlinearity, Volume 12 (1999), pp. 757-769
[9] Topology and mechanics, II, Invent. Math., Volume 10 (1970), pp. 303-331
- Equilibria and stability in the restricted
-body problem with logarithm potential, Astrophysics and Space Science, Volume 370 (2025) no. 3 | DOI:10.1007/s10509-025-04415-w - On kite central configurations, Nonlinearity, Volume 38 (2025) no. 7, p. 33 (Id/No 075001) | DOI:10.1088/1361-6544/add834 | Zbl:8051716
- “Twist vectors” for central configuration equations, Celestial Mechanics and Dynamical Astronomy, Volume 136 (2024) no. 6, p. 15 (Id/No 50) | DOI:10.1007/s10569-024-10222-2 | Zbl:7949682
- Spectral stability, spectral flow and circular relative equilibria for the Newtonian
-body problem, Journal of Differential Equations, Volume 337 (2022), pp. 323-362 | DOI:10.1016/j.jde.2022.07.032 | Zbl:1502.70026 - Bifurcations of balanced configurations for the Newtonian
-body problem in , Journal of Fixed Point Theory and Applications, Volume 24 (2022) no. 2, p. 25 (Id/No 22) | DOI:10.1007/s11784-022-00932-1 | Zbl:1524.70034 - Bifurcations of balanced configurations for the Newtonian
-body problem in , Symplectic geometry. A festschrift in honour of Claude Viterbo's 60th birthday. In 2 volumes, Cham: Birkhäuser, 2022, pp. 73-97 | DOI:10.1007/978-3-031-19111-4_4 | Zbl:1552.37055 - Minimal period estimates on
-symmetric periodic solutions of first-order mild superquadratic Hamiltonian systems, Frontiers of Mathematics in China, Volume 16 (2021) no. 1, pp. 239-253 | DOI:10.1007/s11464-021-0903-z | Zbl:1478.37064 - Planar
-body central configurations with a homogeneous potential, Celestial Mechanics and Dynamical Astronomy, Volume 131 (2019) no. 5, p. 27 (Id/No 20) | DOI:10.1007/s10569-019-9898-0 | Zbl:1451.70023 - Minimal
-symmetric period problem of first-order autonomous Hamiltonian systems, Frontiers of Mathematics in China, Volume 12 (2017) no. 3, pp. 641-654 | DOI:10.1007/s11464-017-0627-2 | Zbl:1390.37106 - Subharmonic
-solutions of first order Hamiltonian systems, Journal of Mathematical Analysis and Applications, Volume 453 (2017) no. 1, pp. 338-359 | DOI:10.1016/j.jmaa.2017.03.046 | Zbl:1373.37132 - Linear instability of relative equilibria for
-body problems in the plane, Journal of Differential Equations, Volume 257 (2014) no. 6, pp. 1773-1813 | DOI:10.1016/j.jde.2014.05.017 | Zbl:1291.70028 - Some problems on the classical n-body problem, Celestial Mechanics and Dynamical Astronomy, Volume 113 (2012) no. 4, p. 369 | DOI:10.1007/s10569-012-9431-1
Cité par 12 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier