Comptes Rendus
Dynamical Systems/Mathematical Problems in Mechanics
Stability of relative equilibria and Morse index of central configurations
[Stabilité d'équilibre relatif et indice de Morse de configuration centrale]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1309-1312.

For the planar n-body problem, if the Morse index or the nullity of a central configuration as a critical point of Newton potential function restricted on the “shape sphere” is odd, then the relative equilibrium corresponding to the central configuration is linearly unstable.

Dans le problème plan des n corps, si l'indice de Morse ou la nullité d'une configuration centrale vue comme un point critique du potentiel newtonien restreint à la « sphère des formes » est impair, l'équilibre relatif correspondant est linéairement instable.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.09.023

Xijun Hu 1 ; Shanzhong Sun 2

1 Department of Mathematics, Shandong University, Jinan, Shandong, 250100, People's Republic of China
2 Department of Mathematics, Capital Normal University, Beijing, 100048, People's Republic of China
@article{CRMATH_2009__347_21-22_1309_0,
     author = {Xijun Hu and Shanzhong Sun},
     title = {Stability of relative equilibria and {Morse} index of central configurations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1309--1312},
     publisher = {Elsevier},
     volume = {347},
     number = {21-22},
     year = {2009},
     doi = {10.1016/j.crma.2009.09.023},
     language = {en},
}
TY  - JOUR
AU  - Xijun Hu
AU  - Shanzhong Sun
TI  - Stability of relative equilibria and Morse index of central configurations
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1309
EP  - 1312
VL  - 347
IS  - 21-22
PB  - Elsevier
DO  - 10.1016/j.crma.2009.09.023
LA  - en
ID  - CRMATH_2009__347_21-22_1309_0
ER  - 
%0 Journal Article
%A Xijun Hu
%A Shanzhong Sun
%T Stability of relative equilibria and Morse index of central configurations
%J Comptes Rendus. Mathématique
%D 2009
%P 1309-1312
%V 347
%N 21-22
%I Elsevier
%R 10.1016/j.crma.2009.09.023
%G en
%F CRMATH_2009__347_21-22_1309_0
Xijun Hu; Shanzhong Sun. Stability of relative equilibria and Morse index of central configurations. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1309-1312. doi : 10.1016/j.crma.2009.09.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.023/

[1] A. Albouy; Y. Fu; S. Sun Symmetry of planar four-body convex central configurations, Proc. R. Soc. A, Volume 464 (2008), pp. 1355-1365

[2] Y. Long Index Theory for Symplectic Paths with Applications, Progress in Math., vol. 207, Birkhäuser, Basel, 2002

[3] C. McCord Planar central configuration estimates in the N-body problem, Ergodic Theory Dyn. System., Volume 16 (1996), pp. 1059-1070

[4] K.R. Meyer; D.S. Schmidt Elliptic relative equilibria in the N-body problem, J. Differential Equations, Volume 214 (2005), pp. 256-298

[5] R. Moeckel Celestial Mechanics, ICTP Lecture Notes, 1994

[6] R. Moeckel Linear stability of relative equilibria with a dominant mass, J. Dynam. Differential Equations, Volume 6 (1994), pp. 37-51

[7] J. Palmore Classifying relative equilibria, I, Bull. Amer. Math. Soc., Volume 79 (1973), pp. 904-908

[8] G.E. Roberts Spectral instability of relative equilibria in the planar n-body problem, Nonlinearity, Volume 12 (1999), pp. 757-769

[9] S. Smale; S. Smale Topology and mechanics, II, Invent. Math., Volume 10 (1970), pp. 303-331

  • A.-M. Muscaş; Daniel Paşca; Cristina Stoica Equilibria and stability in the restricted (n+1)-body problem with logarithm potential, Astrophysics and Space Science, Volume 370 (2025) no. 3 | DOI:10.1007/s10509-025-04415-w
  • Gareth E. Roberts On kite central configurations, Nonlinearity, Volume 38 (2025) no. 7, p. 33 (Id/No 075001) | DOI:10.1088/1361-6544/add834 | Zbl:8051716
  • Marshall Hampton “Twist vectors” for central configuration equations, Celestial Mechanics and Dynamical Astronomy, Volume 136 (2024) no. 6, p. 15 (Id/No 50) | DOI:10.1007/s10569-024-10222-2 | Zbl:7949682
  • Luca Asselle; Alessandro Portaluri; Li Wu Spectral stability, spectral flow and circular relative equilibria for the Newtonian n-body problem, Journal of Differential Equations, Volume 337 (2022), pp. 323-362 | DOI:10.1016/j.jde.2022.07.032 | Zbl:1502.70026
  • Luca Asselle; Marco Fenucci; Alessandro Portaluri Bifurcations of balanced configurations for the Newtonian n-body problem in R4, Journal of Fixed Point Theory and Applications, Volume 24 (2022) no. 2, p. 25 (Id/No 22) | DOI:10.1007/s11784-022-00932-1 | Zbl:1524.70034
  • Luca Asselle; Marco Fenucci; Alessandro Portaluri Bifurcations of balanced configurations for the Newtonian n-body problem in R4, Symplectic geometry. A festschrift in honour of Claude Viterbo's 60th birthday. In 2 volumes, Cham: Birkhäuser, 2022, pp. 73-97 | DOI:10.1007/978-3-031-19111-4_4 | Zbl:1552.37055
  • Xiaofei Zhang; Chungen Liu Minimal period estimates on P-symmetric periodic solutions of first-order mild superquadratic Hamiltonian systems, Frontiers of Mathematics in China, Volume 16 (2021) no. 1, pp. 239-253 | DOI:10.1007/s11464-021-0903-z | Zbl:1478.37064
  • Marshall Hampton Planar N-body central configurations with a homogeneous potential, Celestial Mechanics and Dynamical Astronomy, Volume 131 (2019) no. 5, p. 27 (Id/No 20) | DOI:10.1007/s10569-019-9898-0 | Zbl:1451.70023
  • Chungen Liu; Benxing Zhou Minimal P-symmetric period problem of first-order autonomous Hamiltonian systems, Frontiers of Mathematics in China, Volume 12 (2017) no. 3, pp. 641-654 | DOI:10.1007/s11464-017-0627-2 | Zbl:1390.37106
  • Chungen Liu; Shanshan Tang Subharmonic Pl-solutions of first order Hamiltonian systems, Journal of Mathematical Analysis and Applications, Volume 453 (2017) no. 1, pp. 338-359 | DOI:10.1016/j.jmaa.2017.03.046 | Zbl:1373.37132
  • Vivina L. Barutello; Riccardo D. Jadanza; Alessandro Portaluri Linear instability of relative equilibria for n-body problems in the plane, Journal of Differential Equations, Volume 257 (2014) no. 6, pp. 1773-1813 | DOI:10.1016/j.jde.2014.05.017 | Zbl:1291.70028
  • Alain Albouy; Hildeberto E. Cabral; Alan A. Santos Some problems on the classical n-body problem, Celestial Mechanics and Dynamical Astronomy, Volume 113 (2012) no. 4, p. 369 | DOI:10.1007/s10569-012-9431-1

Cité par 12 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: