Nous montrons qu'une hypersurface compacte, immergée dans l'espace hyperbolique ou l'hémisphère ouvert, de courbure moyenne constante et dont la courbure scalaire est presque constante est une sphère géodésique.
We show that a compact immersed hypersurface of hyperbolic space or an open half-sphere with constant mean curvature and almost constant scalar curvature is a geodesic sphere.
Accepté le :
Publié le :
Julien Roth 1
@article{CRMATH_2009__347_19-20_1197_0, author = {Julien Roth}, title = {Une nouvelle caract\'erisation des sph\`eres g\'eod\'esiques dans les espaces mod\`eles}, journal = {Comptes Rendus. Math\'ematique}, pages = {1197--1200}, publisher = {Elsevier}, volume = {347}, number = {19-20}, year = {2009}, doi = {10.1016/j.crma.2009.09.012}, language = {fr}, }
Julien Roth. Une nouvelle caractérisation des sphères géodésiques dans les espaces modèles. Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1197-1200. doi : 10.1016/j.crma.2009.09.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.012/
[1] A characteristic property of spheres, Ann. Mat. Pura Appl., Volume 58 (1962), pp. 303-315
[2] Eigenvalue pinching and application to the stability and the almost umbilicity of hypersurfaces | arXiv
[3] Differential Geometry in the Large, Lecture Notes in Mathematics, vol. 1000, Springer-Verlag, 1983
[4] Sobolev and isoperimetric inequalities for Riemannian submanifolds, Comm. Pure Appl. Math., Volume 28 (1975), pp. 765-766
[5] New examples of constant mean curvature immersions of ()-spheres into Euclidean 2k-space, Ann. Math., Volume 117 (1983) no. 3, pp. 609-625
[6] An end-to-end construction for compact constant mean curvature surfaces, Pac. J. Math., Volume 221 (2005) no. 1, pp. 81-108
[7] Constant mean curvature surfaces constructed by fusing Wente tori, Invent. Math., Volume 119 (1995) no. 3, pp. 443-518
[8] Géométrie des groupes de transformation, Dunod, 1958
[9] S. Montiel, A. Ros, Compact Hypersurfaces: The Alexandrov Theorem for Higher Order Mean Curvature, Pitman Monographs Surveys Pure Appl. Math., vol. 52, 1991, pp. 279–296
[10] Rigidity results for geodesic spheres in space forms, Differential Geometry, Proceedings of the VIII International Colloquium, World Scientific, 2009, pp. 156-163
[11] Counterexample to a conjecture of H. Hopf, Pac. J. Math., Volume 121 (1986) no. 1, pp. 193-243
Cité par Sources :
Commentaires - Politique