[Hypoelliptic Laplacian and orbital integrals]
We give a new approach to orbital integrals based on the hypoelliptic Laplacian. The formalism unifies the Atiyah–Singer index theorem and the trace formula.
On donne une nouvelle méthode de calcul d'intégrales orbitales utilisant le Laplacien hypoelliptique. On obtient un formalisme unifiant le théorème de l'indice d'Atiyah–Singer et la formule des traces.
Accepted:
Published online:
Jean-Michel Bismut 1
@article{CRMATH_2009__347_19-20_1189_0, author = {Jean-Michel Bismut}, title = {Laplacien hypoelliptique et int\'egrales orbitales}, journal = {Comptes Rendus. Math\'ematique}, pages = {1189--1195}, publisher = {Elsevier}, volume = {347}, number = {19-20}, year = {2009}, doi = {10.1016/j.crma.2009.09.014}, language = {fr}, }
Jean-Michel Bismut. Laplacien hypoelliptique et intégrales orbitales. Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1189-1195. doi : 10.1016/j.crma.2009.09.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.014/
[1] Manifolds of Nonpositive Curvature, Progr. Math., vol. 61, Birkhäuser Boston Inc., Boston, MA, 1985
[2] Large Deviations and the Malliavin Calculus, Progr. Math., vol. 45, Birkhäuser Boston Inc., Boston, MA, 1984
[3] The hypoelliptic Laplacian on the cotangent bundle, J. Amer. Math. Soc., Volume 18 (2005) no. 2, pp. 379-476 (electronic)
[4] The hypoelliptic Dirac operator, Geometry and Dynamics of Groups and Spaces, Progr. Math., vol. 265, Birkhäuser, Basel, 2008, pp. 113-246
[5] The hypoelliptic Laplacian on a compact Lie group, J. Funct. Anal., Volume 255 (2008) no. 9, pp. 2190-2232
[6] J.-M. Bismut, Hypoelliptic Laplacian and orbital integrals, 2009, in preparation
[7] The Hypoelliptic Laplacian and Ray–Singer Metrics, Ann. of Math. Stud., vol. 167, Princeton University Press, Princeton, NJ, 2008
[8] Hypoelliptic second order differential equations, Acta Math., Volume 119 (1967), pp. 147-171
[9] On Macdonald's η-function formula, the Laplacian and generalized exponents, Adv. Math., Volume 20 (1976) no. 2, pp. 179-212
[10] Clifford algebra analogue of the Hopf–Koszul–Samelson theorem, the ρ-decomposition , and the -module structure of , Adv. Math., Volume 125 (1997) no. 2, pp. 275-350
[11] Geometric Fokker–Planck equations, Port. Math. (N.S.), Volume 62 (2005) no. 4, pp. 469-530
[12] Stochastic calculus of variation and hypoelliptic operators, Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1976, Wiley, New York (1978), pp. 195-263
[13] Supersymmetry and Morse theory, J. Differential Geom., Volume 17 (1983) no. 4, pp. 661-692 (1982)
Cited by Sources:
Comments - Policy