Comptes Rendus
Géométrie différentielle
Laplacien hypoelliptique et intégrales orbitales
[Hypoelliptic Laplacian and orbital integrals]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1189-1195.

We give a new approach to orbital integrals based on the hypoelliptic Laplacian. The formalism unifies the Atiyah–Singer index theorem and the trace formula.

On donne une nouvelle méthode de calcul d'intégrales orbitales utilisant le Laplacien hypoelliptique. On obtient un formalisme unifiant le théorème de l'indice d'Atiyah–Singer et la formule des traces.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.09.014

Jean-Michel Bismut 1

1 Département de mathématique, université Paris-Sud, bâtiment 425, 91405 Orsay cedex, France
@article{CRMATH_2009__347_19-20_1189_0,
     author = {Jean-Michel Bismut},
     title = {Laplacien hypoelliptique et int\'egrales orbitales},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1189--1195},
     publisher = {Elsevier},
     volume = {347},
     number = {19-20},
     year = {2009},
     doi = {10.1016/j.crma.2009.09.014},
     language = {fr},
}
TY  - JOUR
AU  - Jean-Michel Bismut
TI  - Laplacien hypoelliptique et intégrales orbitales
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1189
EP  - 1195
VL  - 347
IS  - 19-20
PB  - Elsevier
DO  - 10.1016/j.crma.2009.09.014
LA  - fr
ID  - CRMATH_2009__347_19-20_1189_0
ER  - 
%0 Journal Article
%A Jean-Michel Bismut
%T Laplacien hypoelliptique et intégrales orbitales
%J Comptes Rendus. Mathématique
%D 2009
%P 1189-1195
%V 347
%N 19-20
%I Elsevier
%R 10.1016/j.crma.2009.09.014
%G fr
%F CRMATH_2009__347_19-20_1189_0
Jean-Michel Bismut. Laplacien hypoelliptique et intégrales orbitales. Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1189-1195. doi : 10.1016/j.crma.2009.09.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.014/

[1] W. Ballmann; M. Gromov; V. Schroeder Manifolds of Nonpositive Curvature, Progr. Math., vol. 61, Birkhäuser Boston Inc., Boston, MA, 1985

[2] J.-M. Bismut Large Deviations and the Malliavin Calculus, Progr. Math., vol. 45, Birkhäuser Boston Inc., Boston, MA, 1984

[3] J.-M. Bismut The hypoelliptic Laplacian on the cotangent bundle, J. Amer. Math. Soc., Volume 18 (2005) no. 2, pp. 379-476 (electronic)

[4] J.-M. Bismut The hypoelliptic Dirac operator, Geometry and Dynamics of Groups and Spaces, Progr. Math., vol. 265, Birkhäuser, Basel, 2008, pp. 113-246

[5] J.-M. Bismut The hypoelliptic Laplacian on a compact Lie group, J. Funct. Anal., Volume 255 (2008) no. 9, pp. 2190-2232

[6] J.-M. Bismut, Hypoelliptic Laplacian and orbital integrals, 2009, in preparation

[7] J.-M. Bismut; G. Lebeau The Hypoelliptic Laplacian and Ray–Singer Metrics, Ann. of Math. Stud., vol. 167, Princeton University Press, Princeton, NJ, 2008

[8] L. Hörmander Hypoelliptic second order differential equations, Acta Math., Volume 119 (1967), pp. 147-171

[9] B. Kostant On Macdonald's η-function formula, the Laplacian and generalized exponents, Adv. Math., Volume 20 (1976) no. 2, pp. 179-212

[10] B. Kostant Clifford algebra analogue of the Hopf–Koszul–Samelson theorem, the ρ-decomposition C(g)=EndVρC(P), and the g-module structure of g, Adv. Math., Volume 125 (1997) no. 2, pp. 275-350

[11] G. Lebeau Geometric Fokker–Planck equations, Port. Math. (N.S.), Volume 62 (2005) no. 4, pp. 469-530

[12] P. Malliavin Stochastic calculus of variation and hypoelliptic operators, Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1976, Wiley, New York (1978), pp. 195-263

[13] E. Witten Supersymmetry and Morse theory, J. Differential Geom., Volume 17 (1983) no. 4, pp. 661-692 (1982)

Cited by Sources:

Comments - Policy