[Équations de Schrödinger à poids indéfinis définies dans tout l'espace]
On considère dans cette Note des équations définies sur
We consider in this Note equations defined in
Accepté le :
Publié le :
Laure Cardoulis 1
@article{CRMATH_2009__347_21-22_1255_0, author = {Laure Cardoulis}, title = {Schr\"odinger equations with indefinite weights in the whole space}, journal = {Comptes Rendus. Math\'ematique}, pages = {1255--1260}, publisher = {Elsevier}, volume = {347}, number = {21-22}, year = {2009}, doi = {10.1016/j.crma.2009.09.016}, language = {en}, }
Laure Cardoulis. Schrödinger equations with indefinite weights in the whole space. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1255-1260. doi : 10.1016/j.crma.2009.09.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.016/
[1] An extension of maximum and antimaximum principles to a Schrödinger equation in
[2] Principal eigenvalues for problems with indefinite weight function on
[3] Global bifurcation results for a semilinear elliptic equation on all of
[4] Existence of solutions for systems involving operators on divergence forms, Electron. J. Differ. Equ. Conf., Volume 16 (2007), pp. 59-80
[5] Abstract evolution equations, periodic problems and applications, Longman Research Notes, Volume 279 (1992)
[6] Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems, Boll. Unione Mat. Ital. B (8), Volume 7 (2004), pp. 159-188
[7] An antimaximum principle for linear elliptic equations with an indefinite weight function, J. Differential Equations, Volume 41 (1981), pp. 369-374
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier