Comptes Rendus
Partial Differential Equations
Schrödinger equations with indefinite weights in the whole space
Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1255-1260.

We consider in this Note equations defined in RN involving Schrödinger operators with indefinite weight functions and with potentials which tend to infinity at infinity. We give some results for the existence of principal eigenvalues and for the maximum principle. We also obtain Courant–Fischer formulas for such eigenvalues.

On considère dans cette Note des équations définies sur RN avec des opérateurs de Schrödinger à poids indéfinis dont les potentiels tendent vers l'infini à l'infini. On donne des résultats pour l'existence de valeurs propres principales ainsi que pour le principe du maximum. On obtient aussi des formules de type Courant–Fischer pour ces valeurs propres.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.09.016

Laure Cardoulis 1

1 Université de Toulouse, UT1 CEREMATH, CNRS, institut de mathématiques de Toulouse, UMR 5219, 21, allées de Brienne, 31042 Toulouse, France
@article{CRMATH_2009__347_21-22_1255_0,
     author = {Laure Cardoulis},
     title = {Schr\"odinger equations with indefinite weights in the whole space},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1255--1260},
     publisher = {Elsevier},
     volume = {347},
     number = {21-22},
     year = {2009},
     doi = {10.1016/j.crma.2009.09.016},
     language = {en},
}
TY  - JOUR
AU  - Laure Cardoulis
TI  - Schrödinger equations with indefinite weights in the whole space
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1255
EP  - 1260
VL  - 347
IS  - 21-22
PB  - Elsevier
DO  - 10.1016/j.crma.2009.09.016
LA  - en
ID  - CRMATH_2009__347_21-22_1255_0
ER  - 
%0 Journal Article
%A Laure Cardoulis
%T Schrödinger equations with indefinite weights in the whole space
%J Comptes Rendus. Mathématique
%D 2009
%P 1255-1260
%V 347
%N 21-22
%I Elsevier
%R 10.1016/j.crma.2009.09.016
%G en
%F CRMATH_2009__347_21-22_1255_0
Laure Cardoulis. Schrödinger equations with indefinite weights in the whole space. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1255-1260. doi : 10.1016/j.crma.2009.09.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.016/

[1] B. Alziary; J. Fleckinger; P. Takác An extension of maximum and antimaximum principles to a Schrödinger equation in R2, J. Differential Equations, Volume 156 (1991), pp. 122-152

[2] K.J. Brown; C. Cosner; J. Fleckinger Principal eigenvalues for problems with indefinite weight function on RN, Proc. AMS, Volume 108 (1990), pp. 147-155

[3] K.J. Brown; N. Stavrakakis Global bifurcation results for a semilinear elliptic equation on all of Rn, Duke Math. J., Volume 85 (1996) no. 1, pp. 77-94

[4] L. Cardoulis Existence of solutions for systems involving operators on divergence forms, Electron. J. Differ. Equ. Conf., Volume 16 (2007), pp. 59-80

[5] D. Daners; P. Koch-Medina Abstract evolution equations, periodic problems and applications, Longman Research Notes, Volume 279 (1992)

[6] J. Fleckinger; J. Hernández; F. de Thélin Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems, Boll. Unione Mat. Ital. B (8), Volume 7 (2004), pp. 159-188

[7] P. Hess An antimaximum principle for linear elliptic equations with an indefinite weight function, J. Differential Equations, Volume 41 (1981), pp. 369-374

Cited by Sources:

Comments - Policy