[Familles de points de Weierstrass speciaux]
The purpose of this Note is to show that loci of (special) Weierstrass points on the fibers of a family
L'objectif principal de cette Note est de montrer que les lieux de points de Weierstrass speciaux dans une famille générale de courbes lisses
Accepté le :
Publié le :
Letterio Gatto 1 ; Parham Salehyan 2
@article{CRMATH_2009__347_21-22_1295_0, author = {Letterio Gatto and Parham Salehyan}, title = {Families of special {Weierstrass} points}, journal = {Comptes Rendus. Math\'ematique}, pages = {1295--1298}, publisher = {Elsevier}, volume = {347}, number = {21-22}, year = {2009}, doi = {10.1016/j.crma.2009.09.018}, language = {en}, }
Letterio Gatto; Parham Salehyan. Families of special Weierstrass points. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1295-1298. doi : 10.1016/j.crma.2009.09.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.018/
[1] Intersection Theory, Springer-Verlag, 1984
[2] (Notes on) Intersection Theory on Moduli Space of Curves, Monografas de Matemática, Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, 2000
[3] Schubert calculus via Hasse–Schmidt derivations, Asian J. Math., Volume 9 (2005) no. 3, pp. 315-322
[4] L. Gatto, Schubert calculus: An algebraic introduction, 25° Colóquio Brasileiro de Matemática, Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, 2005
[5] L. Gatto, A. Nigro, A remark on Porteous' formula (2009), in preparation
[6] L. Gatto, P. Salehyan, Weierstrass points of the universal curve (2009), in preparation
[7] Schubert calculus on Grassmann algebra, Canad. Math. Bull., Volume 52 (2009) no. 2, pp. 200-212
[8] Derivatives of Wronskians with applications to families of special Weierstrass points, Trans. Amer. Math. Soc., Volume 351 (1999) no. 6, pp. 2233-2255
[9] A determinantal formula for the exterior powers of the polynomial ring, Indiana Univ. Math. J., Volume 56 (2007) no. 2, pp. 825-845
[10] Schubert calculus on Grassmannians and exterior products, Indiana Univ. Math. J., Volume 58 (2009) no. 1, pp. 283-300
[11] Weierstrass points of the universal curve, Math. Ann., Volume 216 (1975), pp. 35-42
[12] Gap sequences and moduli in genus 4, Math. Z., Volume 175 (1980), pp. 67-75
[13] Towards an enumerative geometry of moduli space of curves, Arithmetic and Geometry, vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271-328
Cité par Sources :
Commentaires - Politique