Comptes Rendus
Algebraic Geometry
Birational permutations
[Bijections birationnelles]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1289-1294.

Nous montrons que toute bijection de Pn(K), pour K un corps fini de caractéristique impaire, est induite par une transformation birationnelle sans point d'indétermination rationnel.

We prove that every permutation of Pn(K), where K is a finite field with odd characteristic, is induced by a birational transformation with no rational indeterminacy point.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.09.019

Serge Cantat 1

1 Département de mathématiques, Université de Rennes, 35042 Rennes, France
@article{CRMATH_2009__347_21-22_1289_0,
     author = {Serge Cantat},
     title = {Birational permutations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1289--1294},
     publisher = {Elsevier},
     volume = {347},
     number = {21-22},
     year = {2009},
     doi = {10.1016/j.crma.2009.09.019},
     language = {en},
}
TY  - JOUR
AU  - Serge Cantat
TI  - Birational permutations
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1289
EP  - 1294
VL  - 347
IS  - 21-22
PB  - Elsevier
DO  - 10.1016/j.crma.2009.09.019
LA  - en
ID  - CRMATH_2009__347_21-22_1289_0
ER  - 
%0 Journal Article
%A Serge Cantat
%T Birational permutations
%J Comptes Rendus. Mathématique
%D 2009
%P 1289-1294
%V 347
%N 21-22
%I Elsevier
%R 10.1016/j.crma.2009.09.019
%G en
%F CRMATH_2009__347_21-22_1289_0
Serge Cantat. Birational permutations. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1289-1294. doi : 10.1016/j.crma.2009.09.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.019/

[1] Prabir Bhattacharya On groups containing the projective special linear group, Arch. Math. (Basel), Volume 37 (1981) no. 4, pp. 295-299

[2] Indranil Biswas; Johannes Huisman Rational real algebraic models of topological surfaces, Doc. Math., Volume 12 (2007), pp. 549-567

[3] Jason Fulman Random matrix theory over finite fields, Bull. Amer. Math. Soc. (N.S.), Volume 39 (2002) no. 1, pp. 51-85 (electronic)

[4] Johannes Huisman, Frédéric Mangolte, The group of automorphisms of a real rational surface is n-transitive, preprint, 2008, pp. 1–7

[5] Janos Kollár, Frédéric Mangolte, Cremona transformations and diffeomorphisms of surfaces, preprint, 2008, pp. 1–17

[6] R. List On permutation groups containing PSLn(q) as a subgroup, Geom. Dedicata, Volume 4 (1975) no. 2/3/4, pp. 373-375

[7] A.M. Lukackiī The structure of Lie algebras of spherical vector fields and the diffeomorphism groups of Sn and RPn, Sibirsk. Mat. Zh., Volume 18 (1977) no. 1, pp. 161-173 (239)

[8] Stefan Maubach Polynomial automorphisms over finite fields, Serdica Math. J., Volume 27 (2001) no. 4, pp. 343-350

[9] Gary L. Mullen; Carl Mummert Finite Fields and Applications, Student Mathematical Library, vol. 41, American Mathematical Society, Providence, RI, 2007

Cité par Sources :

Commentaires - Politique