Comptes Rendus
Algebraic Geometry
Poincaré families and automorphisms of principal bundles on a curve
Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1285-1288.

Let C be a smooth projective curve, and let G be a reductive algebraic group. We give a necessary condition, in terms of automorphism groups of principal G-bundles on C, for the existence of Poincaré families parameterized by Zariski-open parts of their coarse moduli schemes. Applications are given for the moduli spaces of orthogonal and symplectic bundles.

Soit C une courbe projective lisse, et soit G un groupe algébrique réductif. On donne une condition nécessaire, en termes de groupes d'automorphismes des G-fibrés principaux sur C, pour l'existence des familles de Poincaré paramétrées par des ouverts de Zariski dans leurs schémas de modules grossiers. On donne des applications pour les espaces de modules des fibrés orthogonaux et symplectiques.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.10.006

Indranil Biswas 1; Norbert Hoffmann 2

1 School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
2 Mathematisches Institut der Freien Universität, Arnimallee 3, 14195 Berlin, Germany
@article{CRMATH_2009__347_21-22_1285_0,
     author = {Indranil Biswas and Norbert Hoffmann},
     title = {Poincar\'e families and automorphisms of principal bundles on a curve},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1285--1288},
     publisher = {Elsevier},
     volume = {347},
     number = {21-22},
     year = {2009},
     doi = {10.1016/j.crma.2009.10.006},
     language = {en},
}
TY  - JOUR
AU  - Indranil Biswas
AU  - Norbert Hoffmann
TI  - Poincaré families and automorphisms of principal bundles on a curve
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1285
EP  - 1288
VL  - 347
IS  - 21-22
PB  - Elsevier
DO  - 10.1016/j.crma.2009.10.006
LA  - en
ID  - CRMATH_2009__347_21-22_1285_0
ER  - 
%0 Journal Article
%A Indranil Biswas
%A Norbert Hoffmann
%T Poincaré families and automorphisms of principal bundles on a curve
%J Comptes Rendus. Mathématique
%D 2009
%P 1285-1288
%V 347
%N 21-22
%I Elsevier
%R 10.1016/j.crma.2009.10.006
%G en
%F CRMATH_2009__347_21-22_1285_0
Indranil Biswas; Norbert Hoffmann. Poincaré families and automorphisms of principal bundles on a curve. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1285-1288. doi : 10.1016/j.crma.2009.10.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.006/

[1] V. Balaji, I. Biswas, D.S. Nagaraj, P.E. Newstead, Universal families on moduli spaces of principal bundles on curves, Int. Math. Res. Not., Article ID 80641, 2006, 16 pages, | DOI

[2] P. Bardsley; R.W. Richardson Étale slices for algebraic transformation groups in characteristic p, Proc. Lond. Math. Soc. Ser. III, Volume 51 (1985), pp. 295-317

[3] I. Biswas; N. Hoffmann Some moduli stacks of symplectic bundles on a curve are rational, Adv. Math., Volume 219 (2008) no. 4, pp. 1150-1176

[4] J.-M. Drezet; M.S. Narasimhan Groupe de Picard des variétés de modules de fibrés semi-stable sur les courbes algébriques, Invent. Math., Volume 97 (1989) no. 1, pp. 53-94

[5] G. Faltings Stable G-bundles and projective connections, J. Algebraic Geom., Volume 2 (1993) no. 3, pp. 507-568

[6] T.L. Gómez; A. Langer; A.H.W. Schmitt; I. Sols Moduli spaces for principal bundles in arbitrary characteristic, Adv. Math., Volume 219 (2008) no. 4, pp. 1177-1245

[7] N. Hoffmann, Rationality and Poincaré families for vector bundles with extra structure on a curve, Int. Math. Res. Not., Article ID rnm010, 2007, 29 pages, | DOI

[8] A. King; A. Schofield Rationality of moduli of vector bundles on curves, Indag. Math. (N.S.), Volume 10 (1999) no. 4, pp. 519-535

[9] Y. Laszlo; C. Sorger The line bundles on the moduli of parabolic G-bundles over curves and their sections, Ann. Sci. Éc. Norm. Supér., Volume 30 (1997) no. 4, pp. 499-525

[10] G. Laumon; L. Moret-Bailly Champs algébriques, Ergeb. Math. Grenzgeb., 3. Folge, vol. 39, Springer, Berlin, 2000

[11] D. Luna Slices étalés, Mém. Soc. Math. Fr., Volume 33 (1973), pp. 81-105

[12] S. Ramanan The moduli space of vector bundles over an algebraic curve, Math. Ann., Volume 200 (1973), pp. 69-84

[13] A. Ramanathan Moduli for principal bundles over algebraic curves. I, Proc. Indian Acad. Sci. Math. Sci., Volume 106 (1996) no. 3, pp. 301-328

[14] A. Ramanathan Moduli for principal bundles over algebraic curves. II, Proc. Indian Acad. Sci. Math. Sci., Volume 106 (1996) no. 4, pp. 421-449

Cited by Sources:

Comments - Policy