Let C be a smooth projective curve, and let G be a reductive algebraic group. We give a necessary condition, in terms of automorphism groups of principal G-bundles on C, for the existence of Poincaré families parameterized by Zariski-open parts of their coarse moduli schemes. Applications are given for the moduli spaces of orthogonal and symplectic bundles.
Soit C une courbe projective lisse, et soit G un groupe algébrique réductif. On donne une condition nécessaire, en termes de groupes d'automorphismes des G-fibrés principaux sur C, pour l'existence des familles de Poincaré paramétrées par des ouverts de Zariski dans leurs schémas de modules grossiers. On donne des applications pour les espaces de modules des fibrés orthogonaux et symplectiques.
Accepted:
Published online:
Indranil Biswas 1; Norbert Hoffmann 2
@article{CRMATH_2009__347_21-22_1285_0, author = {Indranil Biswas and Norbert Hoffmann}, title = {Poincar\'e families and automorphisms of principal bundles on a curve}, journal = {Comptes Rendus. Math\'ematique}, pages = {1285--1288}, publisher = {Elsevier}, volume = {347}, number = {21-22}, year = {2009}, doi = {10.1016/j.crma.2009.10.006}, language = {en}, }
TY - JOUR AU - Indranil Biswas AU - Norbert Hoffmann TI - Poincaré families and automorphisms of principal bundles on a curve JO - Comptes Rendus. Mathématique PY - 2009 SP - 1285 EP - 1288 VL - 347 IS - 21-22 PB - Elsevier DO - 10.1016/j.crma.2009.10.006 LA - en ID - CRMATH_2009__347_21-22_1285_0 ER -
Indranil Biswas; Norbert Hoffmann. Poincaré families and automorphisms of principal bundles on a curve. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1285-1288. doi : 10.1016/j.crma.2009.10.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.006/
[1] V. Balaji, I. Biswas, D.S. Nagaraj, P.E. Newstead, Universal families on moduli spaces of principal bundles on curves, Int. Math. Res. Not., Article ID 80641, 2006, 16 pages, | DOI
[2] Étale slices for algebraic transformation groups in characteristic p, Proc. Lond. Math. Soc. Ser. III, Volume 51 (1985), pp. 295-317
[3] Some moduli stacks of symplectic bundles on a curve are rational, Adv. Math., Volume 219 (2008) no. 4, pp. 1150-1176
[4] Groupe de Picard des variétés de modules de fibrés semi-stable sur les courbes algébriques, Invent. Math., Volume 97 (1989) no. 1, pp. 53-94
[5] Stable G-bundles and projective connections, J. Algebraic Geom., Volume 2 (1993) no. 3, pp. 507-568
[6] Moduli spaces for principal bundles in arbitrary characteristic, Adv. Math., Volume 219 (2008) no. 4, pp. 1177-1245
[7] N. Hoffmann, Rationality and Poincaré families for vector bundles with extra structure on a curve, Int. Math. Res. Not., Article ID rnm010, 2007, 29 pages, | DOI
[8] Rationality of moduli of vector bundles on curves, Indag. Math. (N.S.), Volume 10 (1999) no. 4, pp. 519-535
[9] The line bundles on the moduli of parabolic G-bundles over curves and their sections, Ann. Sci. Éc. Norm. Supér., Volume 30 (1997) no. 4, pp. 499-525
[10] Champs algébriques, Ergeb. Math. Grenzgeb., 3. Folge, vol. 39, Springer, Berlin, 2000
[11] Slices étalés, Mém. Soc. Math. Fr., Volume 33 (1973), pp. 81-105
[12] The moduli space of vector bundles over an algebraic curve, Math. Ann., Volume 200 (1973), pp. 69-84
[13] Moduli for principal bundles over algebraic curves. I, Proc. Indian Acad. Sci. Math. Sci., Volume 106 (1996) no. 3, pp. 301-328
[14] Moduli for principal bundles over algebraic curves. II, Proc. Indian Acad. Sci. Math. Sci., Volume 106 (1996) no. 4, pp. 421-449
Cited by Sources:
Comments - Policy