[Stabilité d'équilibre relatif et indice de Morse de configuration centrale]
Dans le problème plan des n corps, si l'indice de Morse ou la nullité d'une configuration centrale vue comme un point critique du potentiel newtonien restreint à la « sphère des formes » est impair, l'équilibre relatif correspondant est linéairement instable.
For the planar n-body problem, if the Morse index or the nullity of a central configuration as a critical point of Newton potential function restricted on the “shape sphere” is odd, then the relative equilibrium corresponding to the central configuration is linearly unstable.
Accepté le :
Publié le :
Xijun Hu 1 ; Shanzhong Sun 2
@article{CRMATH_2009__347_21-22_1309_0, author = {Xijun Hu and Shanzhong Sun}, title = {Stability of relative equilibria and {Morse} index of central configurations}, journal = {Comptes Rendus. Math\'ematique}, pages = {1309--1312}, publisher = {Elsevier}, volume = {347}, number = {21-22}, year = {2009}, doi = {10.1016/j.crma.2009.09.023}, language = {en}, }
TY - JOUR AU - Xijun Hu AU - Shanzhong Sun TI - Stability of relative equilibria and Morse index of central configurations JO - Comptes Rendus. Mathématique PY - 2009 SP - 1309 EP - 1312 VL - 347 IS - 21-22 PB - Elsevier DO - 10.1016/j.crma.2009.09.023 LA - en ID - CRMATH_2009__347_21-22_1309_0 ER -
Xijun Hu; Shanzhong Sun. Stability of relative equilibria and Morse index of central configurations. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1309-1312. doi : 10.1016/j.crma.2009.09.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.023/
[1] Symmetry of planar four-body convex central configurations, Proc. R. Soc. A, Volume 464 (2008), pp. 1355-1365
[2] Index Theory for Symplectic Paths with Applications, Progress in Math., vol. 207, Birkhäuser, Basel, 2002
[3] Planar central configuration estimates in the N-body problem, Ergodic Theory Dyn. System., Volume 16 (1996), pp. 1059-1070
[4] Elliptic relative equilibria in the N-body problem, J. Differential Equations, Volume 214 (2005), pp. 256-298
[5] Celestial Mechanics, ICTP Lecture Notes, 1994
[6] Linear stability of relative equilibria with a dominant mass, J. Dynam. Differential Equations, Volume 6 (1994), pp. 37-51
[7] Classifying relative equilibria, I, Bull. Amer. Math. Soc., Volume 79 (1973), pp. 904-908
[8] Spectral instability of relative equilibria in the planar n-body problem, Nonlinearity, Volume 12 (1999), pp. 757-769
[9] Topology and mechanics, II, Invent. Math., Volume 10 (1970), pp. 303-331
Cité par Sources :
Commentaires - Politique