[Un résultat de non-existence pour les équations de Ginzburg–Landau]
Nous considérons les équations de Ginzburg–Landau dans , . Nous exhibons une classe de champs magnétiques appliqués telle que les équations de Ginzburg–Landau n'admettent pas de solution d'énergie finie.
We consider the stationary Ginzburg–Landau equations in , . We exhibit a class of applied magnetic fields (including constant fields) such that the Ginzburg–Landau equations do not admit finite energy solutions.
Accepté le :
Publié le :
Ayman Kachmar 1 ; Mikael Persson 1
@article{CRMATH_2009__347_21-22_1261_0, author = {Ayman Kachmar and Mikael Persson}, title = {A non-existence result for the {Ginzburg{\textendash}Landau} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {1261--1264}, publisher = {Elsevier}, volume = {347}, number = {21-22}, year = {2009}, doi = {10.1016/j.crma.2009.09.024}, language = {en}, }
Ayman Kachmar; Mikael Persson. A non-existence result for the Ginzburg–Landau equations. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1261-1264. doi : 10.1016/j.crma.2009.09.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.024/
[1] On the magnetic properties of superconductors of the second type, Soviet Phys. JETP, Volume 5 (1957), pp. 1174-1182
[2] Vortex analysis of the periodic Ginzburg–Landau model, Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, Volume 26 (2009) no. 4, pp. 1223-1236
[3] Schrödinger Operators, Springer-Verlag, Berlin, 1987
[4] Bifurcation vers l'état d'Abrikosov et diagramme des phases, Thèse, Orsay, 1999 http://xxx.lanl.gov/abs/math-ph/9912011 (available online at)
[5] S. Fournais, B. Helffer, Spectral Methods in Surface Superconductivity, Progress in Nonlinear Differential Equations and Their Applications, vol. 77, Birkhäuser, Basel, 2010, in press
[6] Remarks on the existence of global minimizers for the Ginzburg–Landau energy functional, Nonlinear Anal., Volume 53 (2003) no. 2, pp. 147-155
[7] Existence regularity and asymptotic behavior of the solutions of the Ginzburg–Landau equations on , Comm. Math. Phys., Volume 123 (1989), pp. 147-161
[8] The existence of Ginzburg–Landau solutions on the plane by a direct variational method, Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, Volume 11 (1994) no. 5, pp. 517-536
Cité par Sources :
Commentaires - Politique