Comptes Rendus
Harmonic Analysis
Norm inequalities for convolution operators
[Inégalités de normes pour les opérateurs de convolution]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1385-1388.

Nous étudions des inégalités de normes de convolutions dans les espaces de Lebesgue et de Lorentz. En premier lieu, nous améliorons l'inégalité bien connue de O'Neil sur les opérateurs de convolution et nous établissons une minoration. En second lieu, nous donnons une estimation du type de Young–O'Neil dans les espaces de Lorentz, à savoir KfL(p,h1)L(p,h2). Enfin, nous présentons des estimations similaires dans les espaces de Lorentz à poids.

We study norm convolution inequalities in Lebesgue and Lorentz spaces. First, we improve the well-known O'Neil's inequality for the convolution operators and prove corresponding estimate from below. Second, we obtain Young–O'Neil-type estimate in the Lorentz spaces for the limit value parameters, i.e., KfL(p,h1)L(p,h2). Finally, similar estimates in the weighted Lorentz spaces are presented.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.10.003

Erlan Nursultanov 1 ; Sergey Tikhonov 2 ; Nazerke Tleukhanova 3

1 Kazakh Branch of Moscow State University, Munatpasova, 7, 010010 Astana, Kazakhstan
2 ICREA and Centre de Recerca Matemàtica, Apartat 50, 08193 Bellaterra, Barcelona, Spain
3 Gumilyov Eurasian National University, Munatpasova, 5, 010008 Astana, Kazakhstan
@article{CRMATH_2009__347_23-24_1385_0,
     author = {Erlan Nursultanov and Sergey Tikhonov and Nazerke Tleukhanova},
     title = {Norm inequalities for convolution operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1385--1388},
     publisher = {Elsevier},
     volume = {347},
     number = {23-24},
     year = {2009},
     doi = {10.1016/j.crma.2009.10.003},
     language = {en},
}
TY  - JOUR
AU  - Erlan Nursultanov
AU  - Sergey Tikhonov
AU  - Nazerke Tleukhanova
TI  - Norm inequalities for convolution operators
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1385
EP  - 1388
VL  - 347
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2009.10.003
LA  - en
ID  - CRMATH_2009__347_23-24_1385_0
ER  - 
%0 Journal Article
%A Erlan Nursultanov
%A Sergey Tikhonov
%A Nazerke Tleukhanova
%T Norm inequalities for convolution operators
%J Comptes Rendus. Mathématique
%D 2009
%P 1385-1388
%V 347
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2009.10.003
%G en
%F CRMATH_2009__347_23-24_1385_0
Erlan Nursultanov; Sergey Tikhonov; Nazerke Tleukhanova. Norm inequalities for convolution operators. Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1385-1388. doi : 10.1016/j.crma.2009.10.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.003/

[1] J. Bastero; M. Milman; F. Ruiz A note on L(,q) spaces and Sobolev embeddings, Indiana Univ. Math. J., Volume 52 (2003), pp. 1215-1230

[2] C. Bennett; R. DeVore; R. Sharpley Weak-L and BMO, Ann. Math. (2), Volume 113 (1981), pp. 601-611

[3] C. Bennett; R. Sharpley Interpolation of Operators, Academic Press, 1988

[4] A.P. Blozinski On a convolution theorem for Lp,q spaces, Trans. Amer. Math. Soc., Volume 164 (1972), pp. 255-265

[5] A.P. Blozinski Convolution of L(p,q) functions, Proc. Amer. Math. Soc., Volume 32 (1972) no. 1, pp. 237-240

[6] H.G. Feichtinger Banach convolution algebras of Wiener type, Budapest, 1980 (Colloq. Math. Soc. János Bolyai), Volume vol. 35, North-Holland, Amsterdam (1983), pp. 509-524

[7] R.A. Hunt On L(p,q) spaces, Enseign. Math. (2), Volume 12 (1966), pp. 249-276

[8] R.A. Kerman Convolution theorems with weights, Trans. Amer. Math. Soc., Volume 280 (1983) no. 1, pp. 207-219

[9] E. Nursultanov, S. Tikhonov, Convolution inequalities in Lorentz spaces, online access: http://www.crm.cat, preprint No. 801, 2008, submitted for publication

[10] E. Nursultanov, S. Tikhonov, Net spaces and boundedness of integral operators, online access: http://www.crm.cat, preprint No. 800, 2008, submitted for publication

[11] E. Nursultanov, S. Tikhonov, N. Tleukhanova, Norm convolution inequalities in Lebesgue spaces, online access: http://www.crm.cat, preprint No. 876, 2009, submitted for publication

[12] R. O'Neil Convolution operators and L(p,q) spaces, Duke Math. J., Volume 30 (1963), pp. 129-142

[13] V.D. Stepanov Some Topics in the Theory of Integral Convolution Operators, Dalnauka, Vladivostok, 2000

[14] L.Y.H. Yap Some remarks on convolution operators and l(p,q) spaces, Duke Math. J., Volume 36 (1969), pp. 647-658

Cité par Sources :

Commentaires - Politique