Comptes Rendus
Probability Theory
Viability property on Riemannian manifolds
Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1423-1428.

This Note studies a sufficient and necessary condition for the viability property of a state system in a closed subset K of a finite-dimensional compact Riemannian manifold without boundary. Our result is: the system enjoys the viability property in K if and only if the square of the distance function of K is a viscosity supersolution of a second-order partial differential equation in some neighborhood of K.

Dans cette Note on donne une condition nécessaire et suffisante pour que soit satisfaite la propriété de viabilité d'un système sur un sous-ensemble K d'une variété riemannienne, de dimension finie, sans bord. Le résultat s'énonce ainsi : le système sur K possède la propriété de viabilité si et seulement si le carré de la fonction distance à K est une sursolution de viscosité d'une équation aux dérivées partielles du second ordre définie sur un voisinage de K.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.10.007

Shige Peng 1; Xuehong Zhu 1, 2

1 Institute of Mathematics, Shandong University, Jinan, 250100, China
2 School of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
@article{CRMATH_2009__347_23-24_1423_0,
     author = {Shige Peng and Xuehong Zhu},
     title = {Viability property on {Riemannian} manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1423--1428},
     publisher = {Elsevier},
     volume = {347},
     number = {23-24},
     year = {2009},
     doi = {10.1016/j.crma.2009.10.007},
     language = {en},
}
TY  - JOUR
AU  - Shige Peng
AU  - Xuehong Zhu
TI  - Viability property on Riemannian manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1423
EP  - 1428
VL  - 347
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2009.10.007
LA  - en
ID  - CRMATH_2009__347_23-24_1423_0
ER  - 
%0 Journal Article
%A Shige Peng
%A Xuehong Zhu
%T Viability property on Riemannian manifolds
%J Comptes Rendus. Mathématique
%D 2009
%P 1423-1428
%V 347
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2009.10.007
%G en
%F CRMATH_2009__347_23-24_1423_0
Shige Peng; Xuehong Zhu. Viability property on Riemannian manifolds. Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1423-1428. doi : 10.1016/j.crma.2009.10.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.007/

[1] D. Azagra; J. Ferrera; B. Sanz Viscosity solutions to second order partial differential equations on Riemannian manifolds, J. Differential Equations, Volume 245 (2008), pp. 307-336

[2] R. Buckdahn; S. Peng; M. Quincampoix; C. Rainer Existence of stochastic control under state constraints, C. R. Acad. Sci. Paris, Volume 327 (1998), pp. 17-22

[3] Elton P. Hsu Stochastic Analysis on Manifolds, American Mathematical Society, 2002

[4] X. Zhu, Viscosity solutions to second order parabolic PDEs on Riemannian manifolds, preprint

Cited by Sources:

Comments - Policy