Comptes Rendus
Algebraic Geometry/Topology
Rigidity for equivariant K-theory
[Théorèmes de rigidité classiques pour la K-théorie]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1403-1407.

Nous étendons les théorèmes de rigidité classiques pour la K-théorie au cadre équivariant de actions des groupes algébriques linéaire. Ces résultats concernent la rigidité pour les points rationels, les extensions de corps et les anneaux locaux henséliens.

We extend the classical rigidity results for K-theory to the equivariant setting of linear algebraic group actions. These results concern rigidity for rational points, field extensions, and Hensel local rings.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.10.020

Serge Yagunov 1, 2 ; Paul Arne Østvær 3

1 Steklov Mathematical Institute, St. Petersburg, Russia
2 Fakultät für Mathematik, Universität Bielefeld, Bielefeld, Germany
3 Department of Mathematics, University of Oslo, Oslo, Norway
@article{CRMATH_2009__347_23-24_1403_0,
     author = {Serge Yagunov and Paul Arne {\O}stv{\ae}r},
     title = {Rigidity for equivariant {\protect\emph{K}-theory}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1403--1407},
     publisher = {Elsevier},
     volume = {347},
     number = {23-24},
     year = {2009},
     doi = {10.1016/j.crma.2009.10.020},
     language = {en},
}
TY  - JOUR
AU  - Serge Yagunov
AU  - Paul Arne Østvær
TI  - Rigidity for equivariant K-theory
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1403
EP  - 1407
VL  - 347
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2009.10.020
LA  - en
ID  - CRMATH_2009__347_23-24_1403_0
ER  - 
%0 Journal Article
%A Serge Yagunov
%A Paul Arne Østvær
%T Rigidity for equivariant K-theory
%J Comptes Rendus. Mathématique
%D 2009
%P 1403-1407
%V 347
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2009.10.020
%G en
%F CRMATH_2009__347_23-24_1403_0
Serge Yagunov; Paul Arne Østvær. Rigidity for equivariant K-theory. Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1403-1407. doi : 10.1016/j.crma.2009.10.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.020/

[1] J.-L. Colliot-Thélène; R.T. Hoobler; B. Kahn The Bloch–Ogus–Gabber Theorem, Fields Institute Commun., vol. 16, Amer. Math. Soc., Providence, 1997, pp. 31-94

[2] O. Gabber K-theory of Henselian local rings and Henselian pairs, Santa Margherita Ligure, 1989 (Contemp. Math.), Volume vol. 126, Amer. Math. Soc., Providence, RI (1992), pp. 59-70

[3] H.A. Gillet, R.W. Thomason, The K-theory of strict Hensel local rings and a theorem of Suslin, in: Proceedings of the Luminy Conference on Algebraic K-Theory, Luminy, 1983, vol. 34, 1984, pp. 241–254

[4] A. Grothendieck Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math., Volume 11 (1961), p. 167

[5] R. Hartshorne Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, New York, 1977

[6] J. Hornbostel; S. Yagunov Rigidity for Henselian local rings and A1-representable theories, Math. Z., Volume 255 (2007) no. 2, pp. 437-449

[7] Amalendu Krishna Gersten conjecture for equivariant K-theory and applications, 2009 (preprint) | arXiv

[8] J.S. Milne Étale Cohomology, Princeton Mathematical Series, vol. 33, Princeton Univ. Press, Princeton, NJ, 1980

[9] I. Panin; S. Yagunov Rigidity for orientable functors, J. Pure Appl. Algebra, Volume 172 (2002) no. 1, pp. 49-77

[10] D. Quillen Higher algebraic K-theory. I, Battelle Memorial Inst., Seattle, Wash., 1972 (Lecture Notes in Math.), Volume vol. 341, Springer, Berlin (1973), pp. 85-147

[11] A.A. Suslin On the K-theory of algebraically closed fields, Invent. Math., Volume 73 (1983) no. 2, pp. 241-245

[12] A.A. Suslin, On the K-theory of local fields, in: Proceedings of the Luminy Conference on Algebraic K-Theory, Luminy, 1983, vol. 34, 1984, pp. 301–318

[13] A.A. Suslin Algebraic K-theory of fields, Berkeley, Calif., 1986, Amer. Math. Soc., Providence, RI (1987), pp. 222-244

[14] R.W. Thomason Algebraic K-theory of group scheme actions, Princeton, NJ, 1983 (Ann. of Math. Stud.), Volume vol. 113, Princeton Univ. Press, Princeton, NJ (1987), pp. 539-563

[15] R.W. Thomason Equivariant algebraic vs. topological K-homology Atiyah–Segal-style, Duke Math. J., Volume 56 (1988) no. 3, pp. 589-636

Cité par Sources :

Commentaires - Politique