[Énumération des groupes nilpotents de classe 2 engendrés par 2 générateurs]
On calcule les nombres de groupes nilpotents d'ordre n, de classe au plus 2, engendrés par au plus 2 générateurs, en donnant une formule explicite pour la fonction génératrice de Dirichlet .
We compute the numbers of nilpotent groups of order n, of class at most 2 generated by at most 2 generators, by giving an explicit formula for the Dirichlet generating function .
Accepté le :
Publié le :
Christopher Voll 1
@article{CRMATH_2009__347_23-24_1347_0, author = {Christopher Voll}, title = {Enumerating finite class-2-nilpotent groups on 2 generators}, journal = {Comptes Rendus. Math\'ematique}, pages = {1347--1350}, publisher = {Elsevier}, volume = {347}, number = {23-24}, year = {2009}, doi = {10.1016/j.crma.2009.10.024}, language = {en}, }
Christopher Voll. Enumerating finite class-2-nilpotent groups on 2 generators. Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1347-1350. doi : 10.1016/j.crma.2009.10.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.024/
[1] Counting p-groups and nilpotent groups, Publ. Math. I.H.E.S., Volume 92 (2000), pp. 63-112
[2] Subgroups of finite index in nilpotent groups, Invent. Math., Volume 93 (1988), pp. 185-223
[3] The p-group generation algorithm, J. Symbolic Comput., Volume 9 (1990) no. 5–6, pp. 677-698 (Computational group theory, Part 1)
[4] C. Voll, Zeta functions of groups and enumeration in Bruhat–Tits buildings, Ph.D. thesis, University of Cambridge, 2002
[5] Normal subgroup growth in free class-2-nilpotent groups, Math. Ann., Volume 332 (2005), pp. 67-79
Cité par Sources :
Commentaires - Politique