Comptes Rendus
Mathematical Analysis
A mapping connected with the Schur–Szegő composition
Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1355-1360.

Every monic polynomial in one variable of the form (x+1)S, degS=n1, is presentable in a unique way as a Schur–Szegő composition of n1 polynomials of the form (x+1)n1(x+ai). We prove geometric properties of the affine mapping associating to the coefficients of S the (n1)-tuple of values of the elementary symmetric functions of the numbers ai.

Tout polynôme unitaire à une variable de la forme (x+1)S, degS=n1, est présentable de façon unique comme composition de Schur–Szegő de n1 polynômes (x+1)n1(x+ai). Nous prouvons des propriétés géométriques de l'application affine associant aux coefficients de S le (n1)-uplet des valeurs des fonctions symétriques élémentaires des nombres ai.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.10.025

Vladimir Petrov Kostov 1

1 Université de Nice, Laboratoire de Mathématiques, UMR 6621, parc Valrose, 06108 Nice cedex 2, France
@article{CRMATH_2009__347_23-24_1355_0,
     author = {Vladimir Petrov Kostov},
     title = {A mapping connected with the {Schur{\textendash}Szeg\H{o}} composition},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1355--1360},
     publisher = {Elsevier},
     volume = {347},
     number = {23-24},
     year = {2009},
     doi = {10.1016/j.crma.2009.10.025},
     language = {en},
}
TY  - JOUR
AU  - Vladimir Petrov Kostov
TI  - A mapping connected with the Schur–Szegő composition
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1355
EP  - 1360
VL  - 347
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2009.10.025
LA  - en
ID  - CRMATH_2009__347_23-24_1355_0
ER  - 
%0 Journal Article
%A Vladimir Petrov Kostov
%T A mapping connected with the Schur–Szegő composition
%J Comptes Rendus. Mathématique
%D 2009
%P 1355-1360
%V 347
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2009.10.025
%G en
%F CRMATH_2009__347_23-24_1355_0
Vladimir Petrov Kostov. A mapping connected with the Schur–Szegő composition. Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1355-1360. doi : 10.1016/j.crma.2009.10.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.025/

[1] S. Alkhatib; V.P. Kostov The Schur–Szegő composition of real polynomials of degree 2, Rev. Mat. Complut., Volume 21 (2008), pp. 191-206

[2] V.P. Kostov The Schur–Szegő composition for hyperbolic polynomials, C. R. Acad. Sci. Paris Sér. I, Volume 345 (2007), pp. 483-488

[3] V.P. Kostov Eigenvectors in the context of the Schur–Szegő composition of polynomials, Math. Balkanica, Volume 22 (2008) no. 1–2, pp. 155-173

[4] V.P. Kostov; B.Z. Shapiro On the Schur–Szegő composition of polynomials, C. R. Acad. Sci. Paris Sér. I, Volume 343 (2006), pp. 81-86

[5] Victor Prasolov Polynomials, Algorithms and Computation in Mathematics, vol. 11, Springer-Verlag, Berlin, 2004

Cited by Sources:

Comments - Policy