Comptes Rendus
Équations aux dérivées partielles
Propagation de fronts dans les équations de Fisher–KPP avec diffusion fractionnaire
Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1361-1366.

On s'intéresse dans cette Note à l'équation de Fisher–KPP dans l'espace entier, où le laplacien est remplacé par le générateur d'un semi-groupe de Feller à noyau lentement décroissant, un exemple important étant le laplacien fractionnaire. A la différence de l'équation de Fisher–KPP classique, où l'état stable envahit l'état instable à une vitesse constante en temps, nous montrons que la vitesse d'invasion est exponentielle en temps. Ces résultats apportent une justification mathématiquement rigoureuse à de nombreuses heuristiques sur ce modèle.

We study in this Note the Fisher–KPP equation where the Laplacian is replaced by the generator of a Feller semigroup with slowly decaying kernel, an important example being the fractional Laplacian. Contrary to what happens in the standard Laplacian case, where the stable state invades the unstable one at constant speed, we prove here that invasion holds at an exponential in time velocity. These results provide a mathematically rigorous justification of numerous heuristics about this model.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.10.012

Xavier Cabré 1 ; Jean-Michel Roquejoffre 2

1 ICREA et Universitat Politécnica de Catalunya, Dep. de Matemàtica Aplicada I, Av. Diagonal 647, 08028 Barcelone, Espagne
2 Institut de mathématiques, Univ. de Toulouse et CNRS (UMR 5219), 118, route de Narbonne, 31062 Toulouse, France
@article{CRMATH_2009__347_23-24_1361_0,
     author = {Xavier Cabr\'e and Jean-Michel Roquejoffre},
     title = {Propagation de fronts dans les \'equations de {Fisher{\textendash}KPP} avec diffusion fractionnaire},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1361--1366},
     publisher = {Elsevier},
     volume = {347},
     number = {23-24},
     year = {2009},
     doi = {10.1016/j.crma.2009.10.012},
     language = {fr},
}
TY  - JOUR
AU  - Xavier Cabré
AU  - Jean-Michel Roquejoffre
TI  - Propagation de fronts dans les équations de Fisher–KPP avec diffusion fractionnaire
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1361
EP  - 1366
VL  - 347
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2009.10.012
LA  - fr
ID  - CRMATH_2009__347_23-24_1361_0
ER  - 
%0 Journal Article
%A Xavier Cabré
%A Jean-Michel Roquejoffre
%T Propagation de fronts dans les équations de Fisher–KPP avec diffusion fractionnaire
%J Comptes Rendus. Mathématique
%D 2009
%P 1361-1366
%V 347
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2009.10.012
%G fr
%F CRMATH_2009__347_23-24_1361_0
Xavier Cabré; Jean-Michel Roquejoffre. Propagation de fronts dans les équations de Fisher–KPP avec diffusion fractionnaire. Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1361-1366. doi : 10.1016/j.crma.2009.10.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.012/

[1] D.G. Aronson; H.F. Weinberger Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., Volume 30 (1978), pp. 33-76

[2] H. Berestycki, J.-M. Roquejoffre, L. Rossi, en préparation

[3] J.-M. Bony; P. Courrège; P. Priouret Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum, Ann. Inst. Fourier, Volume 18 (1968), pp. 369-521

[4] X. Cabré, J.-M. Roquejoffre, The influence of fractional diffusion in Fisher–KPP equations, en préparation

[5] J. Duoandikoetxea Fourier Analysis, SFO Graduate Studies in Mathematics, vol. 29, American Mathematical Society, Providence, RI, 2001

[6] F. Hamel, L. Roques, Fast propagation for KPP equations with slowly decaying initial conditions, en préparation

[7] A.N. Kolmogorov; I.G. Petrovskii; N.S. Piskunov Etude de l'équation de diffusion avec accroissement de la quantité de matière, et son application à un problème biologique, Bjul. Moskowskogo Gos. Univ., Volume 17 (1937), pp. 1-26

[8] R. Mancinelli; D. Vergni; A. Vulpiani Front propagation in reactive systems with anomalous diffusion, Phys. D, Volume 185 (2003), pp. 175-195

  • Yu Wei; Yahan Wang; Huiqin Lu Asymptotics for fractional reaction diffusion equations in periodic media, AIMS Mathematics, Volume 10 (2025) no. 2, p. 3819 | DOI:10.3934/math.2025177
  • Olivia Clifton; Arnd Scheel Coherent Structures in Nonlocal Systems: Functional Analytic Tools, Journal of Dynamics and Differential Equations, Volume 37 (2025) no. 1, p. 919 | DOI:10.1007/s10884-023-10290-2
  • Henri Berestycki; Jean-Michel Roquejoffre; Luca Rossi Biological invasions and epidemics with nonlocal diffusion along a line, Mathematical Medicine and Biology: A Journal of the IMA, Volume 42 (2025) no. 1, p. 4 | DOI:10.1093/imammb/dqae014
  • Gabrielle Nornberg; Disson dos Prazeres; Alexander Quaas Fundamental solutions and critical Lane-Emden exponents for nonlinear integral operators in cones, Journal of Functional Analysis, Volume 287 (2024) no. 4, p. 110487 | DOI:10.1016/j.jfa.2024.110487
  • Jean-Michel Roquejoffre Final Remarks, The Dynamics of Front Propagation in Nonlocal Reaction–Diffusion Equations (2024), p. 189 | DOI:10.1007/978-3-031-77772-1_7
  • Emeric Bouin; Vincent Calvez; Emmanuel Grenier; Grégoire Nadin Large‐scale asymptotics of velocity‐jump processes and nonlocal Hamilton–Jacobi equations, Journal of the London Mathematical Society, Volume 108 (2023) no. 1, p. 141 | DOI:10.1112/jlms.12742
  • Elisa Affili; Serena Dipierro; Enrico Valdinoci Decay Estimates in Time for Classical and Anomalous Diffusion, 2018 MATRIX Annals, Volume 3 (2020), p. 167 | DOI:10.1007/978-3-030-38230-8_12
  • Gabriel Morgado; Bogdan Nowakowski; Annie Lemarchand Stochastic approach to Fisher and Kolmogorov, Petrovskii, and Piskunov wave fronts for species with different diffusivities in dilute and concentrated solutions, Physica A: Statistical Mechanics and its Applications, Volume 558 (2020), p. 124954 | DOI:10.1016/j.physa.2020.124954
  • Franz Achleitner Two Classes of Nonlocal Evolution Equations Related by a Shared Traveling Wave Problem, From Particle Systems to Partial Differential Equations, Volume 209 (2017), p. 47 | DOI:10.1007/978-3-319-66839-0_2
  • Annalisa Massaccesi; Enrico Valdinoci Is a nonlocal diffusion strategy convenient for biological populations in competition?, Journal of Mathematical Biology, Volume 74 (2017) no. 1-2, p. 113 | DOI:10.1007/s00285-016-1019-z
  • Alessandro Audrito; Juan Luis Vázquez The Fisher–KPP problem with doubly nonlinear “fast” diffusion, Nonlinear Analysis, Volume 157 (2017), p. 212 | DOI:10.1016/j.na.2017.03.015
  • Juan Luis Vázquez The Mathematical Theories of Diffusion: Nonlinear and Fractional Diffusion, Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, Volume 2186 (2017), p. 205 | DOI:10.1007/978-3-319-61494-6_5
  • J. Calvo; J. Campos; V. Caselles; O. Sánchez; J. Soler Pattern formation in a flux limited reaction–diffusion equation of porous media type, Inventiones mathematicae, Volume 206 (2016) no. 1, p. 57 | DOI:10.1007/s00222-016-0649-5
  • J. Campos; J. Soler Qualitative behavior and traveling waves for flux-saturated porous media equations arising in optimal mass transportation, Nonlinear Analysis, Volume 137 (2016), p. 266 | DOI:10.1016/j.na.2015.12.021
  • Changfeng Gui; Mingfeng Zhao Traveling wave solutions of Allen–Cahn equation with a fractional Laplacian, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 32 (2015) no. 4, p. 785 | DOI:10.1016/j.anihpc.2014.03.005
  • Emeric Bouin; Vincent Calvez; Grégoire Nadin Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts, Archive for Rational Mechanics and Analysis, Volume 217 (2015) no. 2, p. 571 | DOI:10.1007/s00205-014-0837-7
  • Yuanhong Wei; Xifeng Su Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian, Calculus of Variations and Partial Differential Equations, Volume 52 (2015) no. 1-2, p. 95 | DOI:10.1007/s00526-013-0706-5
  • Sylvie Méléard; Sepideh Mirrahimi Singular Limits for Reaction-Diffusion Equations with Fractional Laplacian and Local or Nonlocal Nonlinearity, Communications in Partial Differential Equations, Volume 40 (2015) no. 5, p. 957 | DOI:10.1080/03605302.2014.963606
  • Hongmei Cheng; Rong Yuan The spreading property for a prey-predator reaction-diffusion system with fractional diffusion, Fractional Calculus and Applied Analysis, Volume 18 (2015) no. 3, p. 565 | DOI:10.1515/fca-2015-0035
  • Juan-Luis Vázquez Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Continuous Dynamical Systems - S, Volume 7 (2014) no. 4, p. 857 | DOI:10.3934/dcdss.2014.7.857
  • Oskar Hallatschek; Daniel S. Fisher Acceleration of evolutionary spread by long-range dispersal, Proceedings of the National Academy of Sciences, Volume 111 (2014) no. 46 | DOI:10.1073/pnas.1404663111
  • Diana Stan; Juan Luis Vázquez The Fisher-KPP Equation with Nonlinear Fractional Diffusion, SIAM Journal on Mathematical Analysis, Volume 46 (2014) no. 5, p. 3241 | DOI:10.1137/130918289
  • James H. von Brecht; Scott G. McCalla Nonlinear Stability through Algebraically Decaying Point Spectrum: Applications to Nonlocal Interaction Equations, SIAM Journal on Mathematical Analysis, Volume 46 (2014) no. 6, p. 3727 | DOI:10.1137/130949798
  • Henri Berestycki; Anne-Charline Coulon; Jean-Michel Roquejoffre; Luca Rossi Speed-up of reaction-diffusion fronts by a line of fast diffusion, Séminaire Laurent Schwartz — EDP et applications (2014), p. 1 | DOI:10.5802/slsedp.62
  • Xavier Cabré; Jean-Michel Roquejoffre The Influence of Fractional Diffusion in Fisher-KPP Equations, Communications in Mathematical Physics, Volume 320 (2013) no. 3, p. 679 | DOI:10.1007/s00220-013-1682-5
  • Eugenio Montefusco; Benedetta Pellacci; Gianmaria Verzini Fractional diffusion with Neumann boundary conditions: The logistic equation, Discrete Continuous Dynamical Systems - B, Volume 18 (2013) no. 8, p. 2175 | DOI:10.3934/dcdsb.2013.18.2175
  • Patricio Felmer; Miguel Yangari Fast Propagation for Fractional KPP Equations with Slowly Decaying Initial Conditions, SIAM Journal on Mathematical Analysis, Volume 45 (2013) no. 2, p. 662 | DOI:10.1137/120879294
  • Anne-Charline Coulon; Jean-Michel Roquejoffre Transition Between Linear and Exponential Propagation in Fisher-KPP Type Reaction-Diffusion Equations, Communications in Partial Differential Equations, Volume 37 (2012) no. 11, p. 2029 | DOI:10.1080/03605302.2012.718024
  • Henri Berestycki; Jean-Michel Roquejoffre; Luca Rossi The periodic patch model for population dynamics with fractional diffusion, Discrete Continuous Dynamical Systems - S, Volume 4 (2011) no. 1, p. 1 | DOI:10.3934/dcdss.2011.4.1
  • Jimmy Garnier Accelerating Solutions in Integro-Differential Equations, SIAM Journal on Mathematical Analysis, Volume 43 (2011) no. 4, p. 1955 | DOI:10.1137/10080693x
  • François Hamel; Lionel Roques Fast propagation for KPP equations with slowly decaying initial conditions, Journal of Differential Equations, Volume 249 (2010) no. 7, p. 1726 | DOI:10.1016/j.jde.2010.06.025
  • François Hamel; Yannick Sire Spreading Speeds for Some Reaction-Diffusion Equations with General Initial Conditions, SIAM Journal on Mathematical Analysis, Volume 42 (2010) no. 6, p. 2872 | DOI:10.1137/090759409

Cité par 32 documents. Sources : Crossref

Commentaires - Politique