On s'intéresse dans cette Note à l'équation de Fisher–KPP dans l'espace entier, où le laplacien est remplacé par le générateur d'un semi-groupe de Feller à noyau lentement décroissant, un exemple important étant le laplacien fractionnaire. A la différence de l'équation de Fisher–KPP classique, où l'état stable envahit l'état instable à une vitesse constante en temps, nous montrons que la vitesse d'invasion est exponentielle en temps. Ces résultats apportent une justification mathématiquement rigoureuse à de nombreuses heuristiques sur ce modèle.
We study in this Note the Fisher–KPP equation where the Laplacian is replaced by the generator of a Feller semigroup with slowly decaying kernel, an important example being the fractional Laplacian. Contrary to what happens in the standard Laplacian case, where the stable state invades the unstable one at constant speed, we prove here that invasion holds at an exponential in time velocity. These results provide a mathematically rigorous justification of numerous heuristics about this model.
Accepté le :
Publié le :
Xavier Cabré 1 ; Jean-Michel Roquejoffre 2
@article{CRMATH_2009__347_23-24_1361_0, author = {Xavier Cabr\'e and Jean-Michel Roquejoffre}, title = {Propagation de fronts dans les \'equations de {Fisher{\textendash}KPP} avec diffusion fractionnaire}, journal = {Comptes Rendus. Math\'ematique}, pages = {1361--1366}, publisher = {Elsevier}, volume = {347}, number = {23-24}, year = {2009}, doi = {10.1016/j.crma.2009.10.012}, language = {fr}, }
TY - JOUR AU - Xavier Cabré AU - Jean-Michel Roquejoffre TI - Propagation de fronts dans les équations de Fisher–KPP avec diffusion fractionnaire JO - Comptes Rendus. Mathématique PY - 2009 SP - 1361 EP - 1366 VL - 347 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2009.10.012 LA - fr ID - CRMATH_2009__347_23-24_1361_0 ER -
Xavier Cabré; Jean-Michel Roquejoffre. Propagation de fronts dans les équations de Fisher–KPP avec diffusion fractionnaire. Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1361-1366. doi : 10.1016/j.crma.2009.10.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.012/
[1] Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., Volume 30 (1978), pp. 33-76
[2] H. Berestycki, J.-M. Roquejoffre, L. Rossi, en préparation
[3] Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum, Ann. Inst. Fourier, Volume 18 (1968), pp. 369-521
[4] X. Cabré, J.-M. Roquejoffre, The influence of fractional diffusion in Fisher–KPP equations, en préparation
[5] Fourier Analysis, SFO Graduate Studies in Mathematics, vol. 29, American Mathematical Society, Providence, RI, 2001
[6] F. Hamel, L. Roques, Fast propagation for KPP equations with slowly decaying initial conditions, en préparation
[7] Etude de l'équation de diffusion avec accroissement de la quantité de matière, et son application à un problème biologique, Bjul. Moskowskogo Gos. Univ., Volume 17 (1937), pp. 1-26
[8] Front propagation in reactive systems with anomalous diffusion, Phys. D, Volume 185 (2003), pp. 175-195
- Asymptotics for fractional reaction diffusion equations in periodic media, AIMS Mathematics, Volume 10 (2025) no. 2, p. 3819 | DOI:10.3934/math.2025177
- Coherent Structures in Nonlocal Systems: Functional Analytic Tools, Journal of Dynamics and Differential Equations, Volume 37 (2025) no. 1, p. 919 | DOI:10.1007/s10884-023-10290-2
- Biological invasions and epidemics with nonlocal diffusion along a line, Mathematical Medicine and Biology: A Journal of the IMA, Volume 42 (2025) no. 1, p. 4 | DOI:10.1093/imammb/dqae014
- Fundamental solutions and critical Lane-Emden exponents for nonlinear integral operators in cones, Journal of Functional Analysis, Volume 287 (2024) no. 4, p. 110487 | DOI:10.1016/j.jfa.2024.110487
- Final Remarks, The Dynamics of Front Propagation in Nonlocal Reaction–Diffusion Equations (2024), p. 189 | DOI:10.1007/978-3-031-77772-1_7
- Large‐scale asymptotics of velocity‐jump processes and nonlocal Hamilton–Jacobi equations, Journal of the London Mathematical Society, Volume 108 (2023) no. 1, p. 141 | DOI:10.1112/jlms.12742
- Decay Estimates in Time for Classical and Anomalous Diffusion, 2018 MATRIX Annals, Volume 3 (2020), p. 167 | DOI:10.1007/978-3-030-38230-8_12
- Stochastic approach to Fisher and Kolmogorov, Petrovskii, and Piskunov wave fronts for species with different diffusivities in dilute and concentrated solutions, Physica A: Statistical Mechanics and its Applications, Volume 558 (2020), p. 124954 | DOI:10.1016/j.physa.2020.124954
- Two Classes of Nonlocal Evolution Equations Related by a Shared Traveling Wave Problem, From Particle Systems to Partial Differential Equations, Volume 209 (2017), p. 47 | DOI:10.1007/978-3-319-66839-0_2
- Is a nonlocal diffusion strategy convenient for biological populations in competition?, Journal of Mathematical Biology, Volume 74 (2017) no. 1-2, p. 113 | DOI:10.1007/s00285-016-1019-z
- The Fisher–KPP problem with doubly nonlinear “fast” diffusion, Nonlinear Analysis, Volume 157 (2017), p. 212 | DOI:10.1016/j.na.2017.03.015
- The Mathematical Theories of Diffusion: Nonlinear and Fractional Diffusion, Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, Volume 2186 (2017), p. 205 | DOI:10.1007/978-3-319-61494-6_5
- Pattern formation in a flux limited reaction–diffusion equation of porous media type, Inventiones mathematicae, Volume 206 (2016) no. 1, p. 57 | DOI:10.1007/s00222-016-0649-5
- Qualitative behavior and traveling waves for flux-saturated porous media equations arising in optimal mass transportation, Nonlinear Analysis, Volume 137 (2016), p. 266 | DOI:10.1016/j.na.2015.12.021
- Traveling wave solutions of Allen–Cahn equation with a fractional Laplacian, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 32 (2015) no. 4, p. 785 | DOI:10.1016/j.anihpc.2014.03.005
- Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts, Archive for Rational Mechanics and Analysis, Volume 217 (2015) no. 2, p. 571 | DOI:10.1007/s00205-014-0837-7
- Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian, Calculus of Variations and Partial Differential Equations, Volume 52 (2015) no. 1-2, p. 95 | DOI:10.1007/s00526-013-0706-5
- Singular Limits for Reaction-Diffusion Equations with Fractional Laplacian and Local or Nonlocal Nonlinearity, Communications in Partial Differential Equations, Volume 40 (2015) no. 5, p. 957 | DOI:10.1080/03605302.2014.963606
- The spreading property for a prey-predator reaction-diffusion system with fractional diffusion, Fractional Calculus and Applied Analysis, Volume 18 (2015) no. 3, p. 565 | DOI:10.1515/fca-2015-0035
- Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Continuous Dynamical Systems - S, Volume 7 (2014) no. 4, p. 857 | DOI:10.3934/dcdss.2014.7.857
- Acceleration of evolutionary spread by long-range dispersal, Proceedings of the National Academy of Sciences, Volume 111 (2014) no. 46 | DOI:10.1073/pnas.1404663111
- The Fisher-KPP Equation with Nonlinear Fractional Diffusion, SIAM Journal on Mathematical Analysis, Volume 46 (2014) no. 5, p. 3241 | DOI:10.1137/130918289
- Nonlinear Stability through Algebraically Decaying Point Spectrum: Applications to Nonlocal Interaction Equations, SIAM Journal on Mathematical Analysis, Volume 46 (2014) no. 6, p. 3727 | DOI:10.1137/130949798
- Speed-up of reaction-diffusion fronts by a line of fast diffusion, Séminaire Laurent Schwartz — EDP et applications (2014), p. 1 | DOI:10.5802/slsedp.62
- The Influence of Fractional Diffusion in Fisher-KPP Equations, Communications in Mathematical Physics, Volume 320 (2013) no. 3, p. 679 | DOI:10.1007/s00220-013-1682-5
- Fractional diffusion with Neumann boundary conditions: The logistic equation, Discrete Continuous Dynamical Systems - B, Volume 18 (2013) no. 8, p. 2175 | DOI:10.3934/dcdsb.2013.18.2175
- Fast Propagation for Fractional KPP Equations with Slowly Decaying Initial Conditions, SIAM Journal on Mathematical Analysis, Volume 45 (2013) no. 2, p. 662 | DOI:10.1137/120879294
- Transition Between Linear and Exponential Propagation in Fisher-KPP Type Reaction-Diffusion Equations, Communications in Partial Differential Equations, Volume 37 (2012) no. 11, p. 2029 | DOI:10.1080/03605302.2012.718024
- The periodic patch model for population dynamics with fractional diffusion, Discrete Continuous Dynamical Systems - S, Volume 4 (2011) no. 1, p. 1 | DOI:10.3934/dcdss.2011.4.1
- Accelerating Solutions in Integro-Differential Equations, SIAM Journal on Mathematical Analysis, Volume 43 (2011) no. 4, p. 1955 | DOI:10.1137/10080693x
- Fast propagation for KPP equations with slowly decaying initial conditions, Journal of Differential Equations, Volume 249 (2010) no. 7, p. 1726 | DOI:10.1016/j.jde.2010.06.025
- Spreading Speeds for Some Reaction-Diffusion Equations with General Initial Conditions, SIAM Journal on Mathematical Analysis, Volume 42 (2010) no. 6, p. 2872 | DOI:10.1137/090759409
Cité par 32 documents. Sources : Crossref
Commentaires - Politique