Comptes Rendus
Mathematical Analysis
Flatness of distributions vanishing on infinitely many hyperplanes
[Platitude des distributions s'annulant sur une infinité d'hyperplans]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1351-1354.

Soit {Lk}k=1 une famille d'hyperplans dans Rn et soit L0 un hyperplan limite de {Lk}. Si u est une distribution satisfaisant à une condition naturelle portant sur le front d'onde et qui s'annule sur Lk pour tout k1, alors u est plate sur L0.

Let {Lk}k=1 be a family of hyperplanes in Rn and let L0 be a limiting hyperplane of {Lk}. Let u be a distribution that satisfies a natural wave front condition and has vanishing restrictions to Lk for all k1. Then u must be flat at L0.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.10.028

Jan Boman 1

1 Department of Mathematics, Stockholm University, SE 10691, Stockholm, Sweden
@article{CRMATH_2009__347_23-24_1351_0,
     author = {Jan Boman},
     title = {Flatness of distributions vanishing on infinitely many hyperplanes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1351--1354},
     publisher = {Elsevier},
     volume = {347},
     number = {23-24},
     year = {2009},
     doi = {10.1016/j.crma.2009.10.028},
     language = {en},
}
TY  - JOUR
AU  - Jan Boman
TI  - Flatness of distributions vanishing on infinitely many hyperplanes
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1351
EP  - 1354
VL  - 347
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2009.10.028
LA  - en
ID  - CRMATH_2009__347_23-24_1351_0
ER  - 
%0 Journal Article
%A Jan Boman
%T Flatness of distributions vanishing on infinitely many hyperplanes
%J Comptes Rendus. Mathématique
%D 2009
%P 1351-1354
%V 347
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2009.10.028
%G en
%F CRMATH_2009__347_23-24_1351_0
Jan Boman. Flatness of distributions vanishing on infinitely many hyperplanes. Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1351-1354. doi : 10.1016/j.crma.2009.10.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.028/

[1] C. Béslisle; J.-C. Massé; T. Ransford When is a probability measure determined by infinitely many projections?, Ann. Probab., Volume 25 (1997), pp. 767-786

[2] J. Boman A local vanishing theorem for distributions, C. R. Acad. Sci. Paris, Ser. I, Volume 315 (1992), pp. 1231-1234

[3] J. Boman, Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform, Inverse Probl. Imaging, in press

[4] L. Hörmander The Analysis of Linear Partial Differential Operators, vol. 1, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983

Cité par Sources :

Commentaires - Politique