Comptes Rendus
Mathematical Analysis
Sharp constants in the Paneyah–Logvinenko–Sereda theorem
[Sur les constantes optimales dans le théorème de Paneyah–Logvinenko–Sereda]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 141-144.

On trouve la norme de l'opérateur inverse de l'opérateur de restriction pour deux types d'ensembles dans la classe des fonctions de Paley–Wiener.

We shall find some sharp constants in one type of uncertainty principle — Paneyah–Logvinenko–Sereda theorem.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.10.029

Alexander Reznikov 1

1 Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
@article{CRMATH_2010__348_3-4_141_0,
     author = {Alexander Reznikov},
     title = {Sharp constants in the {Paneyah{\textendash}Logvinenko{\textendash}Sereda} theorem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {141--144},
     publisher = {Elsevier},
     volume = {348},
     number = {3-4},
     year = {2010},
     doi = {10.1016/j.crma.2009.10.029},
     language = {en},
}
TY  - JOUR
AU  - Alexander Reznikov
TI  - Sharp constants in the Paneyah–Logvinenko–Sereda theorem
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 141
EP  - 144
VL  - 348
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2009.10.029
LA  - en
ID  - CRMATH_2010__348_3-4_141_0
ER  - 
%0 Journal Article
%A Alexander Reznikov
%T Sharp constants in the Paneyah–Logvinenko–Sereda theorem
%J Comptes Rendus. Mathématique
%D 2010
%P 141-144
%V 348
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2009.10.029
%G en
%F CRMATH_2010__348_3-4_141_0
Alexander Reznikov. Sharp constants in the Paneyah–Logvinenko–Sereda theorem. Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 141-144. doi : 10.1016/j.crma.2009.10.029. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.029/

[1] V. Havin; B. Jöricke The Uncertainty Principle in Harmonic Analysis, Springer-Verlag, 1994

[2] T. Kato Perturbation Theory for Linear Operators, Springer, 1995

[3] I. Komarov; L. Ponomaryov; S. Slavyanov Spheroid and Coulons Spheroid Functions, Nauka, 1976 (in Russian)

[4] A.L. Volberg Thin and thick families of rational fractions, Complex Analysis and Spectral Theory, Lecture Notes in Math., vol. 864, 1981, pp. 440-480

  • Philippe Jaming; Michael Speckbacher Planar Sampling Sets for the Short-Time Fourier Transform, Constructive Approximation, Volume 53 (2021) no. 3, p. 479 | DOI:10.1007/s00365-020-09503-4
  • Helge Knutsen Daubechies’ Time–Frequency Localization Operator on Cantor Type Sets I, Journal of Fourier Analysis and Applications, Volume 26 (2020) no. 3 | DOI:10.1007/s00041-020-09751-9
  • Gengsheng Wang; Ming Wang; Can Zhang; Yubiao Zhang Observable set, observability, interpolation inequality and spectral inequality for the heat equation in Rn, Journal de Mathématiques Pures et Appliquées, Volume 126 (2019), p. 144 | DOI:10.1016/j.matpur.2019.04.009

Cité par 3 documents. Sources : Crossref

Commentaires - Politique