[Sur les constantes optimales dans le théorème de Paneyah–Logvinenko–Sereda]
On trouve la norme de l'opérateur inverse de l'opérateur de restriction pour deux types d'ensembles dans la classe des fonctions de Paley–Wiener.
We shall find some sharp constants in one type of uncertainty principle — Paneyah–Logvinenko–Sereda theorem.
Accepté le :
Publié le :
Alexander Reznikov 1
@article{CRMATH_2010__348_3-4_141_0, author = {Alexander Reznikov}, title = {Sharp constants in the {Paneyah{\textendash}Logvinenko{\textendash}Sereda} theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {141--144}, publisher = {Elsevier}, volume = {348}, number = {3-4}, year = {2010}, doi = {10.1016/j.crma.2009.10.029}, language = {en}, }
Alexander Reznikov. Sharp constants in the Paneyah–Logvinenko–Sereda theorem. Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 141-144. doi : 10.1016/j.crma.2009.10.029. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.029/
[1] The Uncertainty Principle in Harmonic Analysis, Springer-Verlag, 1994
[2] Perturbation Theory for Linear Operators, Springer, 1995
[3] Spheroid and Coulons Spheroid Functions, Nauka, 1976 (in Russian)
[4] Thin and thick families of rational fractions, Complex Analysis and Spectral Theory, Lecture Notes in Math., vol. 864, 1981, pp. 440-480
- Planar Sampling Sets for the Short-Time Fourier Transform, Constructive Approximation, Volume 53 (2021) no. 3, p. 479 | DOI:10.1007/s00365-020-09503-4
- Daubechies’ Time–Frequency Localization Operator on Cantor Type Sets I, Journal of Fourier Analysis and Applications, Volume 26 (2020) no. 3 | DOI:10.1007/s00041-020-09751-9
- Observable set, observability, interpolation inequality and spectral inequality for the heat equation in Rn, Journal de Mathématiques Pures et Appliquées, Volume 126 (2019), p. 144 | DOI:10.1016/j.matpur.2019.04.009
Cité par 3 documents. Sources : Crossref
Commentaires - Politique