We prove that for a holomorphic submersion of reduced complex spaces, the basic Oka property implies the parametric Oka property. It follows that a stratified subelliptic submersion, or a stratified fiber bundle whose fibers are Oka manifolds, enjoys the parametric Oka property.
Nous prouvons que, pour une submersion holomorphe des espaces complexes réduits, la propriété d'Oka simple implique la propriété d'Oka paramétrique. En particulier, toute submersion sous-elliptique stratifié possède la propriété d'Oka paramétrique.
Accepted:
Published online:
Franc Forstnerič 1
@article{CRMATH_2010__348_3-4_145_0, author = {Franc Forstneri\v{c}}, title = {Oka maps}, journal = {Comptes Rendus. Math\'ematique}, pages = {145--148}, publisher = {Elsevier}, volume = {348}, number = {3-4}, year = {2010}, doi = {10.1016/j.crma.2009.12.004}, language = {en}, }
Franc Forstnerič. Oka maps. Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 145-148. doi : 10.1016/j.crma.2009.12.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.12.004/
[1] The Oka principle for sections of subelliptic submersions, Math. Z., Volume 241 (2002), pp. 527-551
[2] Oka manifolds, C. R. Acad. Sci. Paris Ser. I, Volume 347 (2009), pp. 1017-1020
[3] The Oka principle for sections of stratified fiber bundles, Pure Appl. Math. Q., Volume 6 (2010) no. 3, pp. 843-874
[4] Invariance of the parametric Oka property (P. Ebenfelt; N. Hungerbuehler; J.J. Kohn; N. Mok; E.J. Straube, eds.), Complex Analysis, Trends Math., Birkhäuser, 2010
[5] Oka's principle for holomorphic submersions with sprays, Math. Ann., Volume 322 (2002), pp. 633-666
[6] Fibrations and Stein neighborhoods (Proc. Amer. Math. Soc., in press) | arXiv
[7] Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc., Volume 2 (1989), pp. 851-897
[8] A solution of Gromov's Vaserstein problem, C. R. Acad. Sci. Paris Ser. I, Volume 346 (2008), pp. 1239-1243
[9] Model structures and the Oka principle, J. Pure Appl. Algebra, Volume 192 (2004), pp. 203-223
[10] Mapping cylinders and the Oka principle, Indiana Univ. Math. J., Volume 54 (2005), pp. 1145-1159
[11] What is an Oka manifold?, Notices Amer. Math. Soc., Volume 57 (2010) no. 1, pp. 50-52 http://www.ams.org/notices/201001/
[12] Reduction of a matrix depending on parameters to a diagonal form by addition operations, Proc. Amer. Math. Soc., Volume 103 (1988), pp. 741-746
Cited by Sources:
Comments - Policy