Comptes Rendus
Complex Analysis
Oka maps
Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 145-148.

We prove that for a holomorphic submersion of reduced complex spaces, the basic Oka property implies the parametric Oka property. It follows that a stratified subelliptic submersion, or a stratified fiber bundle whose fibers are Oka manifolds, enjoys the parametric Oka property.

Nous prouvons que, pour une submersion holomorphe des espaces complexes réduits, la propriété d'Oka simple implique la propriété d'Oka paramétrique. En particulier, toute submersion sous-elliptique stratifié possède la propriété d'Oka paramétrique.

Published online:
DOI: 10.1016/j.crma.2009.12.004

Franc Forstnerič 1

1 Faculty of Mathematics and Physics, University of Ljubljana, and Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia
     author = {Franc Forstneri\v{c}},
     title = {Oka maps},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {145--148},
     publisher = {Elsevier},
     volume = {348},
     number = {3-4},
     year = {2010},
     doi = {10.1016/j.crma.2009.12.004},
     language = {en},
AU  - Franc Forstnerič
TI  - Oka maps
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 145
EP  - 148
VL  - 348
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2009.12.004
LA  - en
ID  - CRMATH_2010__348_3-4_145_0
ER  - 
%0 Journal Article
%A Franc Forstnerič
%T Oka maps
%J Comptes Rendus. Mathématique
%D 2010
%P 145-148
%V 348
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2009.12.004
%G en
%F CRMATH_2010__348_3-4_145_0
Franc Forstnerič. Oka maps. Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 145-148. doi : 10.1016/j.crma.2009.12.004.

[1] F. Forstnerič The Oka principle for sections of subelliptic submersions, Math. Z., Volume 241 (2002), pp. 527-551

[2] F. Forstnerič Oka manifolds, C. R. Acad. Sci. Paris Ser. I, Volume 347 (2009), pp. 1017-1020

[3] F. Forstnerič The Oka principle for sections of stratified fiber bundles, Pure Appl. Math. Q., Volume 6 (2010) no. 3, pp. 843-874

[4] F. Forstnerič Invariance of the parametric Oka property (P. Ebenfelt; N. Hungerbuehler; J.J. Kohn; N. Mok; E.J. Straube, eds.), Complex Analysis, Trends Math., Birkhäuser, 2010

[5] F. Forstnerič; J. Prezelj Oka's principle for holomorphic submersions with sprays, Math. Ann., Volume 322 (2002), pp. 633-666

[6] F. Forstnerič; E.F. Wold Fibrations and Stein neighborhoods (Proc. Amer. Math. Soc., in press) | arXiv

[7] M. Gromov Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc., Volume 2 (1989), pp. 851-897

[8] B. Ivarsson; F. Kutzschebauch A solution of Gromov's Vaserstein problem, C. R. Acad. Sci. Paris Ser. I, Volume 346 (2008), pp. 1239-1243

[9] F. Lárusson Model structures and the Oka principle, J. Pure Appl. Algebra, Volume 192 (2004), pp. 203-223

[10] F. Lárusson Mapping cylinders and the Oka principle, Indiana Univ. Math. J., Volume 54 (2005), pp. 1145-1159

[11] F. Lárusson What is an Oka manifold?, Notices Amer. Math. Soc., Volume 57 (2010) no. 1, pp. 50-52

[12] L. Vaserstein Reduction of a matrix depending on parameters to a diagonal form by addition operations, Proc. Amer. Math. Soc., Volume 103 (1988), pp. 741-746

Cited by Sources:

Comments - Policy