[Estimations asymptotiques fortes pour les polynômes de Bergman sur des domaines ayant une frontière analytique par morceaux]
Soit G un domaine simplement connexe dans le plan complexe , avec une frontière qui est une courbe de Jordan, et soit les polynômes de Bergman associés a G. Plus precisémént la suite
Let G be a bounded simply-connected domain in the complex plane , whose boundary is a Jordan curve, and let denote the sequence of Bergman polynomials of G. This is defined as the sequence
Accepté le :
Publié le :
Nikos Stylianopoulos 1
@article{CRMATH_2010__348_1-2_21_0, author = {Nikos Stylianopoulos}, title = {Strong asymptotics for {Bergman} polynomials over non-smooth domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {21--24}, publisher = {Elsevier}, volume = {348}, number = {1-2}, year = {2010}, doi = {10.1016/j.crma.2009.11.007}, language = {en}, }
Nikos Stylianopoulos. Strong asymptotics for Bergman polynomials over non-smooth domains. Comptes Rendus. Mathématique, Volume 348 (2010) no. 1-2, pp. 21-24. doi : 10.1016/j.crma.2009.11.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.11.007/
[1] Über die Approximation analytisher Funktionen durch lineare Aggregate von vorgegebenen Potenzen, Ark. Mat. Astr. Fys., Volume 17 (1923) no. 9, pp. 215-244
[2] Bergman polynomials on an archipelago: Estimates, zeros and shape reconstruction, Adv. Math., Volume 222 (2009), pp. 1405-1460
[3] The search for singularities of solutions to the Dirichlet problem: recent developments http://shell.cas.usf.edu/~dkhavins/publications.html (preprint:)
[4] Recurrence relations for orthogonal polynomials and algebraicity of solutions of the Dirichlet problem, Around the Research of Vladimir Maz'ya II, International Mathematical Series, vol. 12, Springer, 2010, pp. 219-228
[5] An asymptotic integral representation for Carleman orthogonal polynomials, Int. Math. Res. Notices, Volume 2008 (2008) (article ID rnn066, 35 pp)
[6] Finite-term relations for planar orthogonal polynomials, Complex Anal. Oper. Theory, Volume 1 (2007) no. 3, pp. 447-456
[7] Orthogonal polynomials from a complex perspective, Columbus, OH, 1989, Kluwer Acad. Publ., Dordrecht (1990), pp. 363-393
[8] Polynomials Orthogonal over a Region and Bieberbach Polynomials, American Mathematical Society, Providence, RI, 1974
[9] Polynomials associated with measures in the complex plane, J. Math. Mech., Volume 16 (1967), pp. 997-1013
Cité par Sources :
Commentaires - Politique