Comptes Rendus
Number Theory
A counterexample to the local–global principle of linear dependence for Abelian varieties
[Un contre-exemple au principe de la dépendance linéaire des variétés abéliennes]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 1-2, pp. 9-10.

Soient k un corps de nombres, A une variété abélienne sur k, P un point de A(k) et X un sous-groupe de A(k). En 2002 Gajda et Kowalski ont demandé s'il est vrai que le point P appartient à X si et seulement si le point (Pmodp) appartient à (Xmodp) pour presque toute place finie p de k. Nous donnons une réponse négative à cette question.

Let A be an Abelian variety defined over a number field k. Let P be a point in A(k) and let X be a subgroup of A(k). Gajda and Kowalski asked in 2002 whether it is true that the point P belongs to X if and only if the point (Pmodp) belongs to (Xmodp) for all but finitely many primes p of k. We provide a counterexample.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.11.019

Peter Jossen 1 ; Antonella Perucca 2

1 NWF I – Mathematik, Universität Regensburg, 93040 Regensburg, Germany
2 Section des mathématiques, École polytechnique fédérale de Lausanne, EPFL station 8, Ch-1015 Lausanne, Switzerland
@article{CRMATH_2010__348_1-2_9_0,
     author = {Peter Jossen and Antonella Perucca},
     title = {A counterexample to the local{\textendash}global principle of linear dependence for {Abelian} varieties},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {9--10},
     publisher = {Elsevier},
     volume = {348},
     number = {1-2},
     year = {2010},
     doi = {10.1016/j.crma.2009.11.019},
     language = {en},
}
TY  - JOUR
AU  - Peter Jossen
AU  - Antonella Perucca
TI  - A counterexample to the local–global principle of linear dependence for Abelian varieties
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 9
EP  - 10
VL  - 348
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2009.11.019
LA  - en
ID  - CRMATH_2010__348_1-2_9_0
ER  - 
%0 Journal Article
%A Peter Jossen
%A Antonella Perucca
%T A counterexample to the local–global principle of linear dependence for Abelian varieties
%J Comptes Rendus. Mathématique
%D 2010
%P 9-10
%V 348
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2009.11.019
%G en
%F CRMATH_2010__348_1-2_9_0
Peter Jossen; Antonella Perucca. A counterexample to the local–global principle of linear dependence for Abelian varieties. Comptes Rendus. Mathématique, Volume 348 (2010) no. 1-2, pp. 9-10. doi : 10.1016/j.crma.2009.11.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.11.019/

[1] S. Barańczuk On a generalization of the support problem of Erdös and its analogues for abelian varieties and K-theory, Journal Pure Appl. Algebra, Volume 214 (2010), pp. 380-384

[2] G. Banaszak On a Hasse principle for Mordell–Weil groups, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 709-714

[3] G. Banaszak; P. Krasoń On arithmetic in Mordell–Weil groups, 2009 | arXiv

[4] G. Banaszak; W. Gajda; P. Krasoń Detecting linear dependence by reduction maps, J. Number Theory, Volume 115 (2005) no. 2, pp. 322-342

[5] J. Cremona Elliptic curve data, 2009 http://www.warwick.ac.uk/staff/J.E.Cremona/

[6] W. Gajda; K. Górnisiewicz Linear dependence in Mordell–Weil groups, J. Reine Angew. Math., Volume 630 (2009), pp. 219-233

[7] P. Jossen Detecting linear dependence on a semiabelian variety, 2009 | arXiv

[8] P. Jossen, On the arithmetic of 1-motives, Ph.D. thesis, Central European University Budapest, July 2009

[9] C. Khare Compatible systems of mod p Galois representations and Hecke characters, Math. Res. Lett., Volume 10 (2003), pp. 71-83

[10] E. Kowalski Some local–global applications of Kummer theory, Manuscripta Math., Volume 111 (2003) no. 1, pp. 105-139

[11] A. Perucca, On the problem of detecting linear dependence for products of abelian varieties and tori, Acta Arith., in press

[12] A. Schinzel On power residues and exponential congruences, Acta Arith., Volume 27 (1975), pp. 397-420

[13] T. Weston Kummer theory of abelian varieties and reduction of Mordell–Weil groups, Acta Arith., Volume 110 (2003), pp. 77-88

Cité par Sources :

Commentaires - Politique