[Un contre-exemple au principe de la dépendance linéaire des variétés abéliennes]
Soient k un corps de nombres, A une variété abélienne sur k, P un point de et X un sous-groupe de . En 2002 Gajda et Kowalski ont demandé s'il est vrai que le point P appartient à X si et seulement si le point appartient à pour presque toute place finie de k. Nous donnons une réponse négative à cette question.
Let A be an Abelian variety defined over a number field k. Let P be a point in and let X be a subgroup of . Gajda and Kowalski asked in 2002 whether it is true that the point P belongs to X if and only if the point belongs to for all but finitely many primes of k. We provide a counterexample.
Accepté le :
Publié le :
Peter Jossen 1 ; Antonella Perucca 2
@article{CRMATH_2010__348_1-2_9_0, author = {Peter Jossen and Antonella Perucca}, title = {A counterexample to the local{\textendash}global principle of linear dependence for {Abelian} varieties}, journal = {Comptes Rendus. Math\'ematique}, pages = {9--10}, publisher = {Elsevier}, volume = {348}, number = {1-2}, year = {2010}, doi = {10.1016/j.crma.2009.11.019}, language = {en}, }
TY - JOUR AU - Peter Jossen AU - Antonella Perucca TI - A counterexample to the local–global principle of linear dependence for Abelian varieties JO - Comptes Rendus. Mathématique PY - 2010 SP - 9 EP - 10 VL - 348 IS - 1-2 PB - Elsevier DO - 10.1016/j.crma.2009.11.019 LA - en ID - CRMATH_2010__348_1-2_9_0 ER -
Peter Jossen; Antonella Perucca. A counterexample to the local–global principle of linear dependence for Abelian varieties. Comptes Rendus. Mathématique, Volume 348 (2010) no. 1-2, pp. 9-10. doi : 10.1016/j.crma.2009.11.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.11.019/
[1] On a generalization of the support problem of Erdös and its analogues for abelian varieties and K-theory, Journal Pure Appl. Algebra, Volume 214 (2010), pp. 380-384
[2] On a Hasse principle for Mordell–Weil groups, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 709-714
[3] On arithmetic in Mordell–Weil groups, 2009 | arXiv
[4] Detecting linear dependence by reduction maps, J. Number Theory, Volume 115 (2005) no. 2, pp. 322-342
[5] Elliptic curve data, 2009 http://www.warwick.ac.uk/staff/J.E.Cremona/
[6] Linear dependence in Mordell–Weil groups, J. Reine Angew. Math., Volume 630 (2009), pp. 219-233
[7] Detecting linear dependence on a semiabelian variety, 2009 | arXiv
[8] P. Jossen, On the arithmetic of 1-motives, Ph.D. thesis, Central European University Budapest, July 2009
[9] Compatible systems of mod p Galois representations and Hecke characters, Math. Res. Lett., Volume 10 (2003), pp. 71-83
[10] Some local–global applications of Kummer theory, Manuscripta Math., Volume 111 (2003) no. 1, pp. 105-139
[11] A. Perucca, On the problem of detecting linear dependence for products of abelian varieties and tori, Acta Arith., in press
[12] On power residues and exponential congruences, Acta Arith., Volume 27 (1975), pp. 397-420
[13] Kummer theory of abelian varieties and reduction of Mordell–Weil groups, Acta Arith., Volume 110 (2003), pp. 77-88
Cité par Sources :
Commentaires - Politique